Suppr超能文献

基于多种皮质特征结合海马亚区体积测量从健康衰老中识别轻度认知障碍亚型。

Identifying subtypes of mild cognitive impairment from healthy aging based on multiple cortical features combined with volumetric measurements of the hippocampal subfields.

作者信息

Guo Shengwen, Xiao Benheng, Wu Congling

机构信息

Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China.

出版信息

Quant Imaging Med Surg. 2020 Jul;10(7):1477-1489. doi: 10.21037/qims-19-872.

Abstract

BACKGROUND

Mild cognitive impairment (MCI) is subtle cognitive decline with an estimated 10-15% yearly conversion rate toward Alzheimer's disease (AD). It remains unexplored in brain cortical association areas in different lobes and its changes with progression and conversion of MCI.

METHODS

Brain structural magnetic resonance (MR) images were collected from 102 stable MCI (sMCI) patients. One hundred eleven were converted MCI (cMCI) patients, and 109 were normal control (NC). The cortical surface features and volumes of subcortical hippocampal subfields were calculated using the FreeSurfer software, followed by an analysis of variance (ANOVA) model, to reveal the differences between the NC-sMCI, NC-cMCI, and sMCI-cMCI groups. Afterward, the support vector machine-recursive feature elimination (SVM-RFE) method was applied to determine the differences between the groups.

RESULTS

The experimental results showed that there were progressive degradations in either range or degree of the brain structure from NC to sMCI, and then to cMCI. The SVM classifier obtained accuracies with 64.62%, 78.96%, and 70.33% in the sMCI-NC, cMCI-NC, and cMCI-sMCI groups, respectively, using the volumes of hippocampal subfields independently. The combination of the volumes from the hippocampal subfields and cortical measurements could significantly increase the performance to 71.86%, 84.64%, and 76.86% for the sMCI-NC, cMCI-NC, and cMCI-sMCI classifications, respectively. Also, the brain regions corresponding to the dominant features with strong discriminative power were widely located in the temporal, frontal, parietal, olfactory cortexes, and most of the hippocampal subfields, which were associated with cognitive decline, memory impairment, spatial navigation, and attention control.

CONCLUSIONS

The combination of cortical features with the volumes of hippocampal subfields could supply critical information for MCI detection and its conversion.

摘要

背景

轻度认知障碍(MCI)是一种轻微的认知衰退,估计每年有10%-15%的转化率会发展为阿尔茨海默病(AD)。目前在不同脑叶的大脑皮质联合区域及其随MCI进展和转化的变化情况仍未得到充分研究。

方法

收集了102例稳定型MCI(sMCI)患者、111例转化型MCI(cMCI)患者和109例正常对照(NC)的脑结构磁共振(MR)图像。使用FreeSurfer软件计算皮质表面特征和海马亚区的皮质下体积,然后采用方差分析(ANOVA)模型,以揭示NC-sMCI、NC-cMCI和sMCI-cMCI组之间的差异。之后,应用支持向量机递归特征消除(SVM-RFE)方法来确定各组之间的差异。

结果

实验结果表明,从NC到sMCI,再到cMCI,大脑结构的范围或程度都存在渐进性退化。使用海马亚区体积,SVM分类器在sMCI-NC、cMCI-NC和cMCI-sMCI组中的准确率分别为64.62%、78.96%和70.33%。海马亚区体积和皮质测量值的组合可将sMCI-NC、cMCI-NC和cMCI-sMCI分类的性能分别显著提高到71.86%、84.64%和76.86%。此外,具有强判别力的主要特征对应的脑区广泛分布在颞叶、额叶、顶叶、嗅觉皮质以及大部分海马亚区,这些区域与认知衰退、记忆障碍、空间导航和注意力控制有关。

结论

皮质特征与海马亚区体积的组合可为MCI检测及其转化提供关键信息。

相似文献

1
基于多种皮质特征结合海马亚区体积测量从健康衰老中识别轻度认知障碍亚型。
Quant Imaging Med Surg. 2020 Jul;10(7):1477-1489. doi: 10.21037/qims-19-872.
2
基于磁共振图像多皮质特征的轻度认知障碍转换判别分析
Front Aging Neurosci. 2017 May 18;9:146. doi: 10.3389/fnagi.2017.00146. eCollection 2017.
3
使用卷积神经网络对轻度认知障碍进行鉴别与转化预测
Quant Imaging Med Surg. 2018 Nov;8(10):992-1003. doi: 10.21037/qims.2018.10.17.
5
轻度认知障碍和阿尔茨海默病中白细胞介素-4与海马亚区的差异关联
Front Aging Neurosci. 2019 Jan 17;10:439. doi: 10.3389/fnagi.2018.00439. eCollection 2018.
6
海马亚区的MRI不对称指数在从轻度认知障碍到阿尔茨海默病的连续过程中升高。
Front Neurosci. 2018 Aug 21;12:576. doi: 10.3389/fnins.2018.00576. eCollection 2018.
7
海马亚区萎缩与阿尔茨海默病病理进展过程中的记忆衰退有关。
Front Aging Neurosci. 2023 Dec 12;15:1287122. doi: 10.3389/fnagi.2023.1287122. eCollection 2023.
8
早期阿尔茨海默病的皮质变化。
J Alzheimers Dis. 2010;22(4):1339-49. doi: 10.3233/JAD-2010-101191.
9
轻度认知障碍患者杏仁核亚区体积改变及其与认知的关联
J Neurol. 2024 Aug;271(8):5460-5467. doi: 10.1007/s00415-024-12500-3. Epub 2024 Jun 15.
10
使用结构 MRI 和简易精神状态检查对痴呆进行集成支持向量机分类。
J Neurosci Methods. 2018 May 15;302:66-74. doi: 10.1016/j.jneumeth.2018.01.003. Epub 2018 Feb 3.

引用本文的文献

1
血管性认知障碍的MRI影像组学研究进展
Insights Imaging. 2025 Jul 1;16(1):146. doi: 10.1186/s13244-025-02026-1.
2
平均皮质曲率的形态测量:认知障碍中的变化分析。
Medicina (Kaunas). 2025 Mar 18;61(3):531. doi: 10.3390/medicina61030531.
3
通过整合多模态临床数据预测轻度认知障碍(MCI)患者未来的痴呆症。
Heliyon. 2024 Aug 22;10(17):e36728. doi: 10.1016/j.heliyon.2024.e36728. eCollection 2024 Sep 15.
4
利用多模态神经影像数据进行机器学习以对阿尔茨海默病阶段进行分类:一项系统综述和荟萃分析。
Cogn Neurodyn. 2024 Jun;18(3):775-794. doi: 10.1007/s11571-023-09993-5. Epub 2023 Aug 18.
5
轻度认知障碍进展为阿尔茨海默病患者海马亚区和杏仁核萎缩
Heliyon. 2024 Mar 8;10(6):e27429. doi: 10.1016/j.heliyon.2024.e27429. eCollection 2024 Mar 30.
6
机器学习分类器以及遗忘型轻度认知障碍中认知表现与海马亚区的关联
Front Aging Neurosci. 2023 Nov 30;15:1273658. doi: 10.3389/fnagi.2023.1273658. eCollection 2023.
7
健康中年和老年人皮质形态的年龄和性别差异及其与认知表现的关系。
Quant Imaging Med Surg. 2023 Feb 1;13(2):1083-1099. doi: 10.21037/qims-22-583. Epub 2022 Dec 13.
8
全脑灰质区域和海马亚区的认知和脑铁沉积。
Eur J Neurosci. 2022 Dec;56(11):6039-6054. doi: 10.1111/ejn.15838. Epub 2022 Oct 20.
9
使用生成对抗网络提高多扫描仪脑图像的分割可靠性
Quant Imaging Med Surg. 2022 Mar;12(3):1775-1786. doi: 10.21037/qims-21-653.
10
正常衰老中轻微认知衰退的预测:定量MRI和PET成像的附加价值。
Front Aging Neurosci. 2021 Jul 12;13:664224. doi: 10.3389/fnagi.2021.664224. eCollection 2021.

本文引用的文献

1
海马亚区在衰老和未来阿尔茨海默病临床综合征中的年度差异率。
Neurobiol Aging. 2020 Jun;90:75-83. doi: 10.1016/j.neurobiolaging.2020.01.011. Epub 2020 Feb 1.
2
轻度认知障碍患者海马亚区体积与向阿尔茨海默病转化的相关性。
Brain Res. 2020 Feb 1;1728:146591. doi: 10.1016/j.brainres.2019.146591. Epub 2019 Dec 7.
3
基于 MRI 的阿尔茨海默病痴呆短期以外的预测:对预测模型设计的影响。
Neuroimage Clin. 2019;23:101837. doi: 10.1016/j.nicl.2019.101837. Epub 2019 Apr 30.
5
前驱期阿尔茨海默病的结构磁共振成像标志物与认知衰退:一项为期2年的纵向研究。
Quant Imaging Med Surg. 2018 Nov;8(10):1004-1019. doi: 10.21037/qims.2018.10.08.
6
使用卷积神经网络对轻度认知障碍进行鉴别与转化预测
Quant Imaging Med Surg. 2018 Nov;8(10):992-1003. doi: 10.21037/qims.2018.10.17.
7
使用单模态 MRI 和深度神经网络对阿尔茨海默病和轻度认知障碍进行自动分类。
Neuroimage Clin. 2019;21:101645. doi: 10.1016/j.nicl.2018.101645. Epub 2018 Dec 18.
8
阿尔茨海默病:用于预测从轻度认知障碍转化的三维磁共振成像纹理
Alzheimers Dement (Amst). 2018 Nov 2;10:755-763. doi: 10.1016/j.dadm.2018.09.002. eCollection 2018.
9
海马亚区体积与成年期记忆回忆衰退的关系。
Front Aging Neurosci. 2018 Oct 10;10:320. doi: 10.3389/fnagi.2018.00320. eCollection 2018.
10
纵向神经影像学海马标志物用于诊断阿尔茨海默病。
Neuroinformatics. 2019 Jan;17(1):43-61. doi: 10.1007/s12021-018-9380-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验