Suppr超能文献

一种全自动人工智能方法,用于非侵入性、基于成像的胶质母细胞瘤遗传改变识别。

A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas.

机构信息

Department of Radiology and Biomedical Imaging, University of California At San Francisco, 350 Parnassus Ave, Suite 307H, San Francisco, CA, 94143-0628, USA.

出版信息

Sci Rep. 2020 Jul 16;10(1):11852. doi: 10.1038/s41598-020-68857-8.

Abstract

Glioblastoma is the most common malignant brain parenchymal tumor yet remains challenging to treat. The current standard of care-resection and chemoradiation-is limited in part due to the genetic heterogeneity of glioblastoma. Previous studies have identified several tumor genetic biomarkers that are frequently present in glioblastoma and can alter clinical management. Currently, genetic biomarker status is confirmed with tissue sampling, which is costly and only available after tumor resection or biopsy. The purpose of this study was to evaluate a fully automated artificial intelligence approach for predicting the status of several common glioblastoma genetic biomarkers on preoperative MRI. We retrospectively analyzed multisequence preoperative brain MRI from 199 adult patients with glioblastoma who subsequently underwent tumor resection and genetic testing. Radiomics features extracted from fully automated deep learning-based tumor segmentations were used to predict nine common glioblastoma genetic biomarkers with random forest regression. The proposed fully automated method was useful for predicting IDH mutations (sensitivity = 0.93, specificity = 0.88), ATRX mutations (sensitivity = 0.94, specificity = 0.92), chromosome 7/10 aneuploidies (sensitivity = 0.90, specificity = 0.88), and CDKN2 family mutations (sensitivity = 0.76, specificity = 0.86).

摘要

胶质母细胞瘤是最常见的恶性脑实质肿瘤,但仍难以治疗。目前的治疗标准——手术切除和放化疗——在一定程度上受到胶质母细胞瘤遗传异质性的限制。先前的研究已经确定了几种在胶质母细胞瘤中经常出现的肿瘤遗传生物标志物,这些标志物可以改变临床管理。目前,遗传生物标志物的状态是通过组织采样来确认的,这种方法费用高昂,并且只有在肿瘤切除或活检后才能进行。本研究旨在评估一种全自动人工智能方法,用于预测术前 MRI 上几种常见胶质母细胞瘤遗传生物标志物的状态。我们回顾性分析了 199 名成年胶质母细胞瘤患者的多序列术前脑部 MRI,这些患者随后接受了肿瘤切除和基因检测。从基于全自动深度学习的肿瘤分割中提取的放射组学特征用于使用随机森林回归预测 9 种常见的胶质母细胞瘤遗传生物标志物。所提出的全自动方法可用于预测 IDH 突变(敏感性=0.93,特异性=0.88)、 ATRX 突变(敏感性=0.94,特异性=0.92)、染色体 7/10 非整倍性(敏感性=0.90,特异性=0.88)和 CDKN2 家族突变(敏感性=0.76,特异性=0.86)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c327/7366666/3294a8ab6c42/41598_2020_68857_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验