SAIL joint Laboratory, L3i, University of La Rochelle, 17000 La Rochelle, France.
SAIL joint Laboratory, L3i, University of La Rochelle, 17000 La Rochelle, France.
Neural Netw. 2020 Oct;130:111-125. doi: 10.1016/j.neunet.2020.06.025. Epub 2020 Jul 3.
Learning with incomplete labels in Neural Networks has been actively investigated these last years. Among different kinds of incomplete labels, we investigate incomplete pixel-level labels which are tackled in many concrete problems. One of the challenges for incomplete pixel-level labels is the missing information at local-level. Most of the current researches with incomplete labels in Neural Network focus on the incompleteness of global labels, only a few works focus on the incompleteness of local labels. To deal with the local incompleteness, we propose a learning approach which uses two dynamic weighted maps in parallel: one for object pixels and another one for background pixels. The two maps are integrated into the loss function of the target Neural Networks, to optimize the model by the present labels and to minimize the damage of the missing labels. We validate our approach on the speech balloon extraction problem in comic book images. Our approach uses the output of a balloon extraction algorithm as incomplete labels. The results are comparable with the state of the art supervised approach with manual labels. The results are very promising because our method does not require any manual labels. In addition, we apply our method to the medical image segmentation task to confirm the generalization of our approach.
近年来,神经网络中的不完全标签学习受到了广泛关注。在不同类型的不完全标签中,我们研究了在许多具体问题中遇到的不完全像素级标签。不完全像素级标签的一个挑战是局部的信息缺失。目前大多数带有不完全标签的神经网络研究都集中在全局标签的不完整性上,只有少数工作关注局部标签的不完整性。为了解决局部不完整性问题,我们提出了一种使用两个并行动态加权图的学习方法:一个用于对象像素,另一个用于背景像素。这两个图被集成到目标神经网络的损失函数中,通过现有标签来优化模型,并最小化缺失标签的影响。我们在漫画图像中的语音气球提取问题上验证了我们的方法。我们的方法使用气球提取算法的输出作为不完全标签。结果与使用手动标签的最新监督方法相当。结果非常有前景,因为我们的方法不需要任何手动标签。此外,我们将我们的方法应用于医学图像分割任务,以确认我们的方法的泛化能力。