Suppr超能文献

基于纤维素II气凝胶的摩擦电纳米发电机。

Cellulose II Aerogel-Based Triboelectric Nanogenerator.

作者信息

Zhang Lei, Liao Yang, Wang Yi-Cheng, Zhang Steven, Yang Weiqing, Pan Xuejun, Wang Zhong Lin

机构信息

School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA.

Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 P. R. China.

出版信息

Adv Funct Mater. 2020 Jul 9;30(28):2001763. doi: 10.1002/adfm.202001763. Epub 2020 May 27.

Abstract

Cellulose-based triboelectric nanogenerators (TENGs) have gained increasing attention. In this study, a novel method is demonstrated to synthesize cellulose-based aerogels and such aerogels are used to fabricate TENGs that can serve as mechanical energy harvesters and self-powered sensors. The cellulose II aerogel is fabricated via a dissolution-regeneration process in a green inorganic molten salt hydrate solvent (lithium bromide trihydrate), where. The as-fabricated cellulose II aerogel exhibits an interconnected open-pore 3D network structure, higher degree of flexibility, high porosity, and a high surface area of 221.3 m g. Given its architectural merits, the cellulose II aerogel-based TENG presents an excellent mechanical response sensitivity and high electrical output performance. By blending with other natural polysaccharides, i.e., chitosan and alginic acid, electron-donating and electron-withdrawing groups are introduced into the composite cellulose II aerogels, which significantly improves the triboelectric performance of the TENG. The cellulose II aerogel-based TENG is demonstrated to light up light-emitting diodes, charge commercial capacitors, power a calculator, and monitor human motions. This study demonstrates the facile fabrication of cellulose II aerogel and its application in TENG, which leads to a high-performance and eco-friendly energy harvesting and self-powered system.

摘要

基于纤维素的摩擦电纳米发电机(TENGs)已受到越来越多的关注。在本研究中,展示了一种合成基于纤维素的气凝胶的新方法,并且此类气凝胶被用于制造可作为机械能收集器和自供电传感器的TENGs。纤维素II气凝胶是通过在绿色无机熔盐水合物溶剂(三水合溴化锂)中的溶解-再生过程制备的。所制备的纤维素II气凝胶呈现出相互连接的开孔三维网络结构、更高的柔韧性、高孔隙率以及221.3 m²/g的高比表面积。鉴于其结构优点,基于纤维素II气凝胶的TENG表现出优异的机械响应灵敏度和高电输出性能。通过与其他天然多糖(即壳聚糖和海藻酸)混合,给电子基团和吸电子基团被引入到复合纤维素II气凝胶中,这显著提高了TENG的摩擦电性能。基于纤维素II气凝胶的TENG被证明能够点亮发光二极管、为商用电容器充电、为计算器供电以及监测人体运动。本研究展示了纤维素II气凝胶的简便制备及其在TENG中的应用,这导致了一种高性能且环保的能量收集和自供电系统。

相似文献

1
Cellulose II Aerogel-Based Triboelectric Nanogenerator.
Adv Funct Mater. 2020 Jul 9;30(28):2001763. doi: 10.1002/adfm.202001763. Epub 2020 May 27.
2
Reversibly Compressible Silanated Cellulose Nanofibril Aerogel for Triboelectric Taekwondo Scoring Sensors.
Small. 2024 Dec;20(50):e2405664. doi: 10.1002/smll.202405664. Epub 2024 Oct 2.
4
Chemical Cross-Linking Cellulose Aerogel-Based Triboelectric Nanogenerators for Energy Harvesting and Sensing Human Activities.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19411-19420. doi: 10.1021/acsami.4c02671. Epub 2024 Apr 8.
6
Highly Porous, Ultralight, Biocompatible Silk Fibroin Aerogel-Based Triboelectric Nanogenerator.
ACS Sens. 2024 Aug 23;9(8):3938-3946. doi: 10.1021/acssensors.4c00401. Epub 2024 Aug 3.
7
Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m.
Adv Mater. 2020 Sep;32(38):e2002824. doi: 10.1002/adma.202002824. Epub 2020 Aug 16.
8
An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing.
ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42880-42890. doi: 10.1021/acsami.0c12709. Epub 2020 Sep 14.
9
Hybrid Aerogel Triboelectric Nanogenerator Based on the Synergistic Effect of Solid-Solid/Gas-Solid Triboelectricity and Piezoelectric Polarization.
ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26682-26690. doi: 10.1021/acsami.3c02969. Epub 2023 May 24.
10
Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16442-16450. doi: 10.1021/acsami.0c01061. Epub 2020 Mar 30.

引用本文的文献

2
Interpretable Machine Learning for Evaluating Nanogenerators' Structural Design.
ACS Nano. 2025 Apr 15;19(14):14456-14466. doi: 10.1021/acsnano.5c02525. Epub 2025 Apr 7.
3
Polysaccharide Nanocrystals-Based Chiral Nematic Structures: From Self-Assembly Mechanisms, Regulation, to Applications.
ACS Nano. 2024 Aug 27;18(34):22675-22708. doi: 10.1021/acsnano.4c03130. Epub 2024 Aug 13.
5
Deep-learning enabled smart insole system aiming for multifunctional foot-healthcare applications.
Exploration (Beijing). 2023 Nov 23;4(1):20230109. doi: 10.1002/EXP.20230109. eCollection 2024 Feb.
6
Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications.
Nanomicro Lett. 2024 May 31;16(1):206. doi: 10.1007/s40820-024-01432-2.
7
Biopolymer Materials in Triboelectric Nanogenerators: A Review.
Polymers (Basel). 2024 May 7;16(10):1304. doi: 10.3390/polym16101304.
8
Porous Polymer Materials in Triboelectric Nanogenerators: A Review.
Polymers (Basel). 2023 Nov 11;15(22):4383. doi: 10.3390/polym15224383.
9
High-performance hybrid nanogenerator for self-powered wireless multi-sensing microsystems.
Microsyst Nanoeng. 2023 Jul 21;9:94. doi: 10.1038/s41378-023-00563-7. eCollection 2023.
10
Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics.
Nanomicro Lett. 2023 May 11;15(1):124. doi: 10.1007/s40820-023-01094-6.

本文引用的文献

2
Triboelectric microplasma powered by mechanical stimuli.
Nat Commun. 2018 Sep 13;9(1):3733. doi: 10.1038/s41467-018-06198-x.
3
Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.
ACS Nano. 2018 May 22;12(5):4280-4285. doi: 10.1021/acsnano.7b08716. Epub 2018 Apr 18.
4
A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel.
Materials (Basel). 2013 Mar 8;6(3):941-968. doi: 10.3390/ma6030941.
5
Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring.
ACS Nano. 2017 Jul 25;11(7):7440-7446. doi: 10.1021/acsnano.7b03818. Epub 2017 Jul 7.
7
Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator.
ACS Nano. 2016 Apr 26;10(4):4797-805. doi: 10.1021/acsnano.6b01569. Epub 2016 Apr 18.
8
Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
ACS Appl Mater Interfaces. 2016 Feb 3;8(4):2732-40. doi: 10.1021/acsami.5b10985. Epub 2016 Jan 22.
9
Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops.
Adv Mater. 2016 Feb 24;28(8):1650-6. doi: 10.1002/adma.201504462. Epub 2015 Dec 15.
10
Triboelectric-Potential-Regulated Charge Transport Through p-n Junctions for Area-Scalable Conversion of Mechanical Energy.
Adv Mater. 2016 Jan 27;28(4):668-76. doi: 10.1002/adma.201504141. Epub 2015 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验