Tovani Camila B, Ferreira Claudio R, Simão Ana Maria S, Bolean Maytê, Coppeta Luca, Rosato Nicola, Bottini Massimo, Ciancaglini Pietro, Ramos Ana Paula
Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Departamento de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil.
Department of Occupational Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
ACS Omega. 2020 Jul 1;5(27):16491-16501. doi: 10.1021/acsomega.0c00900. eCollection 2020 Jul 14.
Titanium oxide (TiO) nano-/microparticles have been widely used in orthopedic and dental sciences because of their excellent mechanical properties, chemical stability, and ability to promote the osseointegration of implants. However, how the structure and crystallinity of TiO particles may affect their osteogenic activity remains elusive. Herein, we evaluated the osteogenic response to submicron amorphous, anatase, and rutile TiO particles with controlled size and morphology. First, the ability of TiO particles to precipitate apatite was assessed in an acellular medium by using a simulated body fluid (SBF). Three days after the addition to SBF, anatase and rutile TiO particles induced the precipitation of aggregates of nanoparticles with a platelike morphology, typical for biomimetic apatite. Conversely, amorphous TiO particles induced the precipitation of particles with poor Ca/P atomic ratio only after 14 days of exposure to SBF. Next, the osteogenic response to TiO particles was assessed in vitro by incubating MC3T3-E1 preosteoblasts with the particles. The viability and mineralization efficiency of osteoblastic cells were maintained in the presence of all the tested TiO particles despite the differences in the induction of apatite precipitation in SBF by TiO particles with different structures. Analysis of the particles' surface charge and of the proteins adsorbed onto the particles from the culture media suggested that all the tested TiO particles acquired a similar biological identity in the culture media. We posited that this phenomenon attenuated potential differences in osteoblast response to amorphous, anatase, and rutile particles. Our study provides an important insight into the complex relationship between the physicochemical properties and function of TiO particles and sheds light on their safe use in medicine.
氧化钛(TiO)纳米/微粒因其优异的机械性能、化学稳定性以及促进植入物骨整合的能力,已在骨科和牙科领域得到广泛应用。然而,TiO颗粒的结构和结晶度如何影响其成骨活性仍不清楚。在此,我们评估了亚微米级无定形、锐钛矿型和金红石型TiO颗粒(尺寸和形态可控)的成骨反应。首先,通过使用模拟体液(SBF)在无细胞培养基中评估TiO颗粒沉淀磷灰石的能力。添加到SBF中三天后,锐钛矿型和金红石型TiO颗粒诱导了具有板状形态的纳米颗粒聚集体的沉淀,这是仿生磷灰石的典型特征。相反,无定形TiO颗粒仅在暴露于SBF 14天后才诱导出钙/磷原子比不佳的颗粒沉淀。接下来,通过将MC3T3-E1前成骨细胞与颗粒一起孵育,在体外评估对TiO颗粒的成骨反应。尽管不同结构的TiO颗粒在SBF中诱导磷灰石沉淀存在差异,但在所有测试的TiO颗粒存在的情况下,成骨细胞的活力和矿化效率得以维持。对颗粒表面电荷以及从培养基中吸附到颗粒上的蛋白质的分析表明,所有测试的TiO颗粒在培养基中获得了相似的生物学特性。我们推测,这种现象减弱了成骨细胞对无定形、锐钛矿型和金红石型颗粒反应的潜在差异。我们的研究为TiO颗粒的物理化学性质与功能之间的复杂关系提供了重要见解,并阐明了它们在医学中的安全使用。