Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.Y., A.P., J.H., W.Z., J.N., A.B., D.A.J., G.G., T.W., S.B., B.B., B.P.K., R.P., J.A.W., R.A.).
Masonic Medical Research Institute, Utica, NY (G.L.A.).
Circulation. 2020 Sep 29;142(13):1261-1278. doi: 10.1161/CIRCULATIONAHA.119.044127. Epub 2020 Jul 20.
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments of AF are suboptimal because they are not targeted to the molecular mechanisms underlying AF. Using a highly novel gene therapy approach in a canine, rapid atrial pacing model of AF, we demonstrate that NADPH oxidase 2 (NOX2) generated oxidative injury causes upregulation of a constitutively active form of acetylcholine-dependent K current (), called ; this is an important mechanism underlying not only the genesis, but also the perpetuation of electric remodeling in the intact, fibrillating atrium.
To understand the mechanism by which oxidative injury promotes the genesis and maintenance of AF, we performed targeted injection of NOX2 short hairpin RNA (followed by electroporation to facilitate gene delivery) in atria of healthy dogs followed by rapid atrial pacing. We used in vivo high-density electric mapping, isolation of atrial myocytes, whole-cell patch clamping, in vitro tachypacing of atrial myocytes, lucigenin chemiluminescence assay, immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and Masson trichrome staining.
First, we demonstrate that generation of oxidative injury in atrial myocytes is a frequency-dependent process, with rapid pacing in canine atrial myocytes inducing oxidative injury through the induction of NOX2 and the generation of mitochondrial reactive oxygen species. We show that oxidative injury likely contributes to electric remodeling in AF by upregulating by a mechanism involving frequency-dependent activation of PKC (protein kinase C epsilon). The time to onset of nonsustained AF increased by >5-fold in NOX2 short hairpin RNA-treated dogs. Furthermore, animals treated with NOX2 short hairpin RNA did not develop sustained AF for up to 12 weeks. The electrophysiological mechanism underlying AF prevention was prolongation of atrial effective refractory periods, at least in part attributable to the attenuation of . Attenuated membrane translocation of PKC appeared to be a likely molecular mechanism underlying this beneficial electrophysiological remodeling.
NOX2 oxidative injury (1) underlies the onset, and the maintenance of electric remodeling in AF, as well, and (2) can be successfully prevented with a novel, gene-based approach. Future optimization of this approach may lead to a novel, mechanism-guided therapy for AF.
心房颤动(AF)是成人中最常见的心律紊乱,也是中风的主要原因。不幸的是,目前的 AF 治疗并不理想,因为它们没有针对 AF 背后的分子机制。我们在犬快速心房起搏的 AF 模型中使用一种高度新颖的基因治疗方法,证明 NADPH 氧化酶 2(NOX2)产生的氧化损伤导致乙酰胆碱依赖性 K 电流()的组成型激活形式上调,称为;这不仅是电重构的起源,也是电重构在完整、颤动心房中持续存在的重要机制。
为了了解氧化损伤促进 AF 发生和维持的机制,我们对健康犬的心房进行了靶向注射 NOX2 短发夹 RNA(随后进行电穿孔以促进基因传递),然后进行快速心房起搏。我们使用体内高密度电映射、心房肌细胞分离、全细胞膜片钳、体外快速起搏心房肌细胞、鲁米诺化学发光测定、免疫印迹、实时聚合酶链反应、免疫组织化学和 Masson 三色染色。
首先,我们证明了心房肌细胞中的氧化损伤是一个频率依赖性的过程,快速起搏犬的心房肌细胞通过诱导 NOX2 和生成线粒体活性氧来诱导氧化损伤。我们表明,氧化损伤可能通过涉及 PKC(蛋白激酶 C epsilon)频率依赖性激活的机制,通过上调来促进 AF 中的电重构。NOX2 短发夹 RNA 处理的犬中,非持续性 AF 的发作时间增加了 5 倍以上。此外,NOX2 短发夹 RNA 处理的动物在长达 12 周内不会发生持续性 AF。AF 预防的电生理机制是心房有效不应期延长,至少部分归因于的衰减。PKC 的膜易位减弱似乎是这种有益的电生理重塑的一个可能的分子机制。
NOX2 氧化损伤(1)是 AF 发生和电重构维持的基础,(2)可以通过一种新的、基于基因的方法成功预防。这种方法的进一步优化可能会为 AF 提供一种新的、基于机制的治疗方法。