Suppr超能文献

使用开源自然视频训练基于深度学习的动态磁共振图像重建。

Training deep learning based dynamic MR image reconstruction using open-source natural videos.

机构信息

UCL Centre for Translational Cardiovascular Imaging, University College London, 30 Guilford St, London, WC1N 1EH, UK.

Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.

出版信息

Sci Rep. 2024 May 23;14(1):11774. doi: 10.1038/s41598-024-62294-7.

Abstract

To develop and assess a deep learning (DL) pipeline to learn dynamic MR image reconstruction from publicly available natural videos (Inter4K). Learning was performed for a range of DL architectures (VarNet, 3D UNet, FastDVDNet) and corresponding sampling patterns (Cartesian, radial, spiral) either from true multi-coil cardiac MR data (N = 692) or from synthetic MR data simulated from Inter4K natural videos (N = 588). Real-time undersampled dynamic MR images were reconstructed using DL networks trained with cardiac data and natural videos, and compressed sensing (CS). Differences were assessed in simulations (N = 104 datasets) in terms of MSE, PSNR, and SSIM and prospectively for cardiac cine (short axis, four chambers, N = 20) and speech cine (N = 10) data in terms of subjective image quality ranking, SNR and Edge sharpness. Friedman Chi Square tests with post-hoc Nemenyi analysis were performed to assess statistical significance. In simulated data, DL networks trained with cardiac data outperformed DL networks trained with natural videos, both of which outperformed CS (p < 0.05). However, in prospective experiments DL reconstructions using both training datasets were ranked similarly (and higher than CS) and presented no statistical differences in SNR and Edge Sharpness for most conditions.The developed pipeline enabled learning dynamic MR reconstruction from natural videos preserving DL reconstruction advantages such as high quality fast and ultra-fast reconstructions while overcoming some limitations (data scarcity or sharing). The natural video dataset, code and pre-trained networks are made readily available on github.

摘要

开发并评估了一种深度学习(DL)管道,用于从公开的自然视频(Inter4K)中学习动态磁共振图像重建。学习是针对一系列 DL 架构(VarNet、3D UNet、FastDVDNet)和相应的采样模式(笛卡尔、径向、螺旋)进行的,这些架构和模式既可以从真实的多通道心脏磁共振数据(N=692)中获取,也可以从从 Inter4K 自然视频模拟的合成磁共振数据(N=588)中获取。使用基于心脏数据和自然视频训练的 DL 网络以及压缩感知(CS)技术重建实时欠采样动态磁共振图像。在模拟(N=104 个数据集)中,从均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)方面评估了差异,并前瞻性地从心脏电影(短轴、四腔室,N=20)和语音电影(N=10)数据方面评估了主观图像质量排名、信噪比(SNR)和边缘锐度。采用 Friedman Chi Square 检验和事后 Nemenyi 分析评估了统计学意义。在模拟数据中,基于心脏数据训练的 DL 网络优于基于自然视频训练的 DL 网络,而这两者都优于 CS(p<0.05)。然而,在前瞻性实验中,使用这两个训练数据集的 DL 重建被评为相似(且高于 CS),并且在大多数情况下,在 SNR 和边缘锐度方面没有统计学差异。该开发的管道能够从自然视频中学习动态磁共振重建,保留了 DL 重建的优势,例如高质量的快速和超快速重建,同时克服了一些限制(数据稀缺或共享)。自然视频数据集、代码和预训练网络都可以在 github 上轻松获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/11116488/968db4bdaa99/41598_2024_62294_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验