Suppr超能文献

MYB30 调控系统性活性氧信号和植物适应。

MYB30 Orchestrates Systemic Reactive Oxygen Signaling and Plant Acclimation.

机构信息

The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201.

Department of Biological Sciences, College of Science, University of North Texas, Denton, Texas 76203.

出版信息

Plant Physiol. 2020 Oct;184(2):666-675. doi: 10.1104/pp.20.00859. Epub 2020 Jul 22.

Abstract

Systemic acquired acclimation (SAA) is a key biological process essential for plant survival under conditions of abiotic stress. SAA was recently shown to be controlled by a rapid systemic signaling mechanism termed the reactive oxygen species (ROS) wave in Arabidopsis (). MYB30 is a key transcriptional regulator mediating many different biological processes. MYB30 was found to act downstream of the ROS wave in systemic tissues of Arabidopsis in response to local high light (HL) stress treatment. However, the function of MYB30 in systemic signaling and SAA is unknown. To determine the relationship among MYB30, the ROS wave, and systemic acclimation in Arabidopsis, the SAA response to HL stress of mutants and wild-type plants was determined. Although plants were found to display enhanced rates of ROS wave propagation and their local tissues acclimated to the HL stress, they were deficient in SAA to HL stress. Compared to wild type, the systemic transcriptomic response of plants was also deficient, lacking in the expression of over 3,500 transcripts. A putative set of 150 core transcripts directly associated with MYB30 function during HL stress was determined. Our study identifies MYB30 as a key regulator that links systemic ROS signaling with systemic transcriptomic responses, SAA, and plant acclimation to HL stress. In addition, it demonstrates that plant acclimation and systemic ROS signaling are interlinked and that the lack of systemic acclimation drives systemic ROS signaling to occur at faster rates, suggesting a feedback mechanism (potentially involving MYB30) between these two processes.

摘要

系统获得性适应(SAA)是植物在非生物胁迫条件下生存所必需的关键生物学过程。最近的研究表明,SAA 受一种称为活性氧(ROS)波的快速系统信号机制控制。MYB30 是一种关键的转录调节因子,介导许多不同的生物学过程。发现 MYB30 在拟南芥的系统组织中,作为 ROS 波的下游,响应局部高光(HL)胁迫处理。然而,MYB30 在系统信号和 SAA 中的功能是未知的。为了确定 MYB30、ROS 波和拟南芥系统适应之间的关系,测定了 HL 胁迫下突变体和野生型植物的 SAA 反应。尽管 植物显示出增强的 ROS 波传播速度,其局部组织适应 HL 胁迫,但它们在 SAA 对 HL 胁迫的反应中却缺乏功能。与野生型相比, 植物的系统转录组反应也缺乏功能,缺乏超过 3500 个转录物的表达。确定了与 HL 胁迫期间 MYB30 功能直接相关的一组 150 个核心转录物。我们的研究将 MYB30 确定为一种关键调节因子,它将系统 ROS 信号与系统转录组反应、SAA 和植物对 HL 胁迫的适应联系起来。此外,它表明植物适应和系统 ROS 信号之间是相互关联的,缺乏系统适应会导致系统 ROS 信号以更快的速度发生,这表明这两个过程之间存在反馈机制(可能涉及 MYB30)。

相似文献

引用本文的文献

本文引用的文献

1
Noninvasive Live ROS Imaging of Whole Plants Grown in Soil.土壤中生长的整株植物的非侵入性活性ROS成像
Trends Plant Sci. 2020 Oct;25(10):1052-1053. doi: 10.1016/j.tplants.2020.05.003. Epub 2020 Jun 18.
2
Systemic signaling during abiotic stress combination in plants.植物非生物胁迫组合期间的系统性信号传导。
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13810-13820. doi: 10.1073/pnas.2005077117. Epub 2020 May 29.
3
WRKY33-PIF4 loop is required for the regulation of HO homeostasis.WRKY33-PIF4 环是调节 HO 动态平衡所必需的。
Biochem Biophys Res Commun. 2020 Jul 5;527(4):922-928. doi: 10.1016/j.bbrc.2020.05.041. Epub 2020 May 16.
8
Whole-Plant Live Imaging of Reactive Oxygen Species.植物活体整体成像技术检测活性氧
Mol Plant. 2019 Sep 2;12(9):1203-1210. doi: 10.1016/j.molp.2019.06.003. Epub 2019 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验