Aix Marseille Univ, INSERM, INMED, Marseille 13273, France.
eNeuro. 2020 Aug 17;7(4). doi: 10.1523/ENEURO.0038-20.2020. Print 2020 Jul/Aug.
Two-photon calcium imaging is now widely used to infer neuronal dynamics from changes in fluorescence of an indicator. However, state-of-the-art computational tools are not optimized for the reliable detection of fluorescence transients from highly synchronous neurons located in densely packed regions such as the CA1 pyramidal layer of the hippocampus during early postnatal stages of development. Indeed, the latest analytical tools often lack proper benchmark measurements. To meet this challenge, we first developed a graphical user interface (GUI) allowing for a precise manual detection of all calcium transients from imaged neurons based on the visualization of the calcium imaging movie. Then, we analyzed movies from mouse pups using a convolutional neural network (CNN) with an attention process and a bidirectional long-short term memory (LSTM) network. This method is able to reach human performance and offers a better F1 score (harmonic mean of sensitivity and precision) than CaImAn to infer neural activity in the developing CA1 without any user intervention. It also enables automatically identifying activity originating from GABAergic neurons. Overall, DeepCINAC offers a simple, fast and flexible open-source toolbox for processing a wide variety of calcium imaging datasets while providing the tools to evaluate its performance.
双光子钙成像现在被广泛用于从指示剂荧光变化推断神经元动力学。然而,最先进的计算工具并没有针对在发育早期的海马 CA1 锥体层等密集区域中高度同步的神经元的荧光瞬变的可靠检测进行优化。事实上,最新的分析工具往往缺乏适当的基准测量。为了应对这一挑战,我们首先开发了一个图形用户界面 (GUI),允许根据钙成像电影的可视化,精确地手动检测所有成像神经元的钙瞬变。然后,我们使用具有注意力过程和双向长短时记忆 (LSTM) 网络的卷积神经网络 (CNN) 分析来自小鼠幼崽的电影。该方法能够达到人类的性能,并提供比 CaImAn 更好的 F1 分数(灵敏度和精度的调和平均值),无需任何用户干预即可推断发育中的 CA1 中的神经活动。它还能够自动识别源自 GABA 能神经元的活动。总的来说,DeepCINAC 提供了一个简单、快速和灵活的开源工具箱,可用于处理各种钙成像数据集,并提供评估其性能的工具。