Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249, Marseille, France.
Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332), Marseille, France.
Elife. 2022 Jul 20;11:e78116. doi: 10.7554/eLife.78116.
Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.
早产儿和新生啮齿动物早期记录的电生理脑振荡最初主要由下至上的感觉运动活动驱动,随后才能脱离外部输入。这是大多数发育中脑区的标志,包括海马体,在成年大脑中,海马体将外部输入整合到内部动力学中。这种与外部输入的发育性脱离可能是认知内部模型适当发育的基本步骤。尽管其重要性,但这种脱离的发展时间表和电路基础仍不清楚。为了解决这个问题,我们使用非麻醉幼鼠的双光子钙成像技术,研究了出生后两周内 CA1 动力学及其潜在回路的每日演变。我们表明,第一周的后期结束时,CA1 中自我运动的代表发生了突然的转变。事实上,大多数 CA1 锥体神经元在第一周后期会从自我运动激活转变为抑制,而大多数 GABA 能神经元在整个时期内仍保持正向调节。这种快速转变发生在 2 天内,并遵循局部体细胞 GABA 能传入的快速解剖和功能激增。观察到的动力学变化与经历抑制增强的两群模型一致。我们提出,这种突然的发育性转变开创了内部海马体动力学的出现。