Duke Human Vaccine Institute, Durham, NC, USA.
Duke University, Department of Medicine, Durham, NC, USA.
Nat Struct Mol Biol. 2020 Oct;27(10):925-933. doi: 10.1038/s41594-020-0479-4. Epub 2020 Jul 22.
The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different β-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.
冠状病毒(CoV)的刺突(S)蛋白参与病毒-宿主细胞融合,是病毒中和的主要免疫原性靶标,也是当前许多疫苗设计工作的重点。高度灵活的 S 蛋白及其可移动结构域使免疫系统难以识别。在这里,为了更好地了解 S 蛋白的可移动性,我们对现有的β-CoV S 蛋白结构进行了基于结构的向量分析。尽管在结构域组织方面总体相似,但我们发现来自不同β-CoV 的 S 蛋白显示出不同的构象。基于该分析,我们为 SARS-CoV-2 S 蛋白开发了两种可溶性外域构建体,其中高度免疫原性和可移动的受体结合域(RBD)要么锁定在所有 RBD 的“向下”位置,要么比野生型 S 蛋白更容易采用“向上”状态构象。这些结果表明,S 蛋白的构象可以通过合理设计进行控制,并为开发用于疫苗应用的工程 CoV S 蛋白提供了框架。