Moreno-Delafuente Ana, Viñuela Elisa, Fereres Alberto, Medina Pilar, Trębicki Piotr
Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain.
Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia.
Insects. 2020 Jul 22;11(8):459. doi: 10.3390/insects11080459.
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO) and temperature on the interactions among wheat ( L.), species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid ( L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO and temperature = 400 ppm and 20 °C), and future predicted (elevated CO and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant-vector-virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops.
气候变化影响作物生产、病虫害压力、产量稳定性,进而影响粮食安全。为了了解气候和大气变化因素如何影响农业中的营养相互作用,我们评估了二氧化碳(CO₂)浓度升高和温度升高对小麦(Triticum aestivum L.)、大麦黄矮病毒PAV株系(BYDV - PAV)及其传播媒介鸟害草燕麦蚜(Rhopalosiphum padi L.)之间相互作用的综合影响。在两种气候和大气情景下,即当前情景(环境CO₂浓度和温度 = 400 ppm和20°C)和未来预测情景(升高的CO₂浓度和温度 = 800 ppm和22°C),对未感染和感染BYDV - PAV的植物的植物性状和蚜虫生物学参数进行了研究。我们的结果表明,CO₂浓度升高和温度升高共同作用增加了植物生长、生物量以及碳氮比(C:N),这反过来又显著降低了蚜虫的繁殖力和发育时间。然而,病毒感染降低了叶绿素含量、生物量、小麦生长和C:N比,显著增加了蚜虫繁殖力和发育时间。无论是否感染病毒,在模拟的未来条件下蚜虫生长速率保持不变。因此,由于鸟害草燕麦蚜目前是全球温带谷类作物的主要害虫,主要因其作为植物病毒传播媒介的作用,它可能将继续具有重大经济重要性。此外,在未来预测情景下突出显示了更早且更明显的病毒症状,这对病毒传播、疾病流行病学以及小麦产量和质量产生影响。这些研究结果强调了未来气候下预期的植物 - 传播媒介 - 病毒相互作用的复杂性及其对粮食作物中植物病害和害虫发生率的影响。