Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, P.O. Box 870311, Tuscaloosa, AL 35487, USA.
Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
Int J Mol Sci. 2020 Jul 17;21(14):5040. doi: 10.3390/ijms21145040.
Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
循环肿瘤细胞(CTCs)是从原发性肿瘤脱落并随血流移动的癌细胞。CTCs 数量的增加会增加乳腺癌转移的风险,并且与乳腺癌患者的生存率呈负相关。尽管 CTCs 的数量通常较低,而且大多数 CTCs 在循环中死亡,但少数 CTCs 的存活可以在继发性部位引发肿瘤的发展。越来越多的研究表明,CTCs 会发生改变以响应血液中动态的生物物理环境,部分原因是流体剪切力。流体剪切力会产生活性氧(ROS),触发氧化还原敏感的细胞信号,并改变细胞内细胞器的功能。特别是,线粒体是决定 CTCs 转移表型的重要靶细胞器。在健康细胞中,线粒体通过电子传递链中的氧化磷酸化产生三磷酸腺苷(ATP),并且在氧化磷酸化过程中,它们会产生生理水平的 ROS。线粒体还控制着凋亡和线粒体通透性转换孔打开等死亡机制,以消除不需要的或受损的细胞。然而,在癌细胞中,线粒体失调,导致异常的能量代谢、氧化还原平衡和细胞死亡途径,这可能有利于癌症的侵袭性。在这篇综述中,我们讨论了流体剪切力对 CTCs 的影响,重点是乳腺癌病理学,然后讨论了可能增加 CTCs 转移潜力的细胞机制的改变。