Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy.
Department of Psychology, University of Milano-Bicocca, Milano, Italy, 20126.
J Neurosci. 2020 Aug 26;40(35):6790-6800. doi: 10.1523/JNEUROSCI.0560-20.2020. Epub 2020 Jul 24.
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of spatial assumptions. Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
在皮质水平上的视动转换沿着一个网络发生,其中后顶叶区域与同源的运动前区域相连。与抓握相关的活动在后部顶叶区域的弥散的、腹侧和背侧系统中被表示,但没有关于类似弥散抓握表示的运动前对应物的系统因果描述。为了填补这一空白,我们在 17 名男性和女性人类参与者中测量了在抓握三个不同大小的物体时右手手指运动的运动学。在视觉呈现物体后 100 毫秒,在覆盖左侧运动前皮层 (PMC) 的 8 个点的规则网格上和 2 个假刺激上施加单次脉冲经颅磁刺激。在到达时最大手指张开度被用作特征,用于在不同类型的分类器中对物体大小进行分类。分类准确性被用作抓握视动转换效率的度量。结果表明,与假刺激相比,当经颅磁刺激施加于腹侧 PMC 的 2 个点和内侧 PMC 的 1 个点时,分类准确性降低,这与已知的抓握表示的腹侧 PMC 和补充运动区的背侧部分相对应。我们的结果表明,在 PMC 中存在物体几何形状的多焦点表示,与已知的抓握表示的多焦点顶叶图相匹配。此外,我们证实,通过应用均匀的空间采样程序,经颅磁刺激可以产生独立于空间假设的皮质功能图。视觉引导的动作激活了一个大的额顶叶网络。在这里,我们使用覆盖整个运动前皮层 (PMC) 的经颅磁刺激点的密集网格,通过精确的空间映射来识别 PMC 在抓握运动期间的功能专业化。结果证实了先前关于腹侧 PMC 在根据目标大小预成型手指方面的作用的发现。至关重要的是,我们发现 PMC 的内侧部分,推测覆盖补充运动区,在物体抓握中发挥直接作用。与非人类灵长类动物的发现一致,这些结果表明,在 PMC 中存在物体几何形状的多焦点表示,并且扩展了我们对大脑如何整合视觉和运动信息以执行视觉引导动作的理解。