Suppr超能文献

青少年物质使用研究中利用神经影像数据集的方法学进展

Methodological Advances in Leveraging Neuroimaging Datasets in Adolescent Substance Use Research.

作者信息

Beltz Adriene M, Weigard Alexander

机构信息

Department of Psychology, University of Michigan, 2227 East Hall, 530 Church Street, Ann Arbor, MI 48109, USA.

Department of Psychiatry, University of Michigan, Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.

出版信息

Curr Addict Rep. 2019 Dec;6(4):495-503. doi: 10.1007/s40429-019-00275-x. Epub 2019 Sep 9.

Abstract

PURPOSE OF REVIEW

Recent innovations in the statistical analysis of neuroimaging data related to adolescent substance use are highlighted. Going beyond assumptions of homogeneity in small studies of regional localization, the focus is on novel approaches that integrate across regions of the brain and levels of analysis in order to detect individual differences in use along with antecedents and consequences.

RECENT FINDINGS

Three analysis approaches are considered. Multimodal approaches like the construct-network framework combine neural, behavioral (including cognitive), and self-report indicators to create comprehensive representations of risk factors for adolescent substance use. Machine learning approaches link adolescent substance use to complex patterns of brain activity detected using prediction-focused algorithms. Person-specific approaches reflect heterogeneity in functional brain connectivity associated with adolescent substance use.

SUMMARY

When applied to specialized datasets, multimodal, machine learning, and person-specific approaches have significant potential to provide unique insights into the neural processes underlying adolescent substance use.

摘要

综述目的

重点介绍与青少年物质使用相关的神经影像数据统计分析方面的最新创新。超越区域定位小型研究中的同质性假设,重点关注整合大脑区域和分析层面的新方法,以便检测使用情况的个体差异及其前因后果。

最新发现

考虑了三种分析方法。像构建网络框架这样的多模态方法结合神经、行为(包括认知)和自我报告指标,以创建青少年物质使用风险因素的综合表征。机器学习方法将青少年物质使用与使用以预测为重点的算法检测到的复杂大脑活动模式联系起来。个体特异性方法反映了与青少年物质使用相关的功能性脑连接的异质性。

总结

当应用于特定数据集时,多模态、机器学习和个体特异性方法有很大潜力为青少年物质使用背后的神经过程提供独特见解。

相似文献

9
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.

本文引用的文献

2
Hunting for What Works: Adolescents in Addiction Treatment.探寻有效方法:成瘾治疗中的青少年
Alcohol Clin Exp Res. 2019 Apr;43(4):578-592. doi: 10.1111/acer.13984. Epub 2019 Mar 15.
5
Addressing Adolescents' and Young Adults' Substance Use Disorders.解决青少年和青年的物质使用障碍。
Med Clin North Am. 2018 Jul;102(4):603-620. doi: 10.1016/j.mcna.2018.02.015.
9
Effects of adolescent alcohol consumption on the brain and behaviour.青少年饮酒对大脑和行为的影响。
Nat Rev Neurosci. 2018 Apr;19(4):197-214. doi: 10.1038/nrn.2018.10. Epub 2018 Feb 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验