Suppr超能文献

大数据分析、人工智能和受自然启发的计算模型在新冠疫情病例的准确检测和接触者追踪方面的研究综述。

Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing.

机构信息

Office of the Deputy Vice Chancellor: Research, Innovation and Engagement, Central University of Technology, Bloemfontein 9301, South Africa.

Centre for Sustainable Smart Cities 4.0, Faculty of Engineering, Built Environment and Information Technology, Central University of Technology, Bloemfontein 9301, South Africa.

出版信息

Int J Environ Res Public Health. 2020 Jul 24;17(15):5330. doi: 10.3390/ijerph17155330.

Abstract

The emergence of the 2019 novel coronavirus (COVID-19) which was declared a pandemic has spread to 210 countries worldwide. It has had a significant impact on health systems and economic, educational and social facets of contemporary society. As the rate of transmission increases, various collaborative approaches among stakeholders to develop innovative means of screening, detecting and diagnosing COVID-19's cases among human beings at a commensurate rate have evolved. Further, the utility of computing models associated with the fourth industrial revolution technologies in achieving the desired feat has been highlighted. However, there is a gap in terms of the accuracy of detection and prediction of COVID-19 cases and tracing contacts of infected persons. This paper presents a review of computing models that can be adopted to enhance the performance of detecting and predicting the COVID-19 pandemic cases. We focus on big data, artificial intelligence (AI) and nature-inspired computing (NIC) models that can be adopted in the current pandemic. The review suggested that artificial intelligence models have been used for the case detection of COVID-19. Similarly, big data platforms have also been applied for tracing contacts. However, the nature-inspired computing (NIC) models that have demonstrated good performance in feature selection of medical issues are yet to be explored for case detection and tracing of contacts in the current COVID-19 pandemic. This study holds salient implications for practitioners and researchers alike as it elucidates the potentials of NIC in the accurate detection of pandemic cases and optimized contact tracing.

摘要

2019 年新型冠状病毒(COVID-19)的出现被宣布为大流行,已经蔓延到全球 210 个国家。它对卫生系统以及当代社会的经济、教育和社会方面都产生了重大影响。随着传播率的增加,利益相关者之间已经发展出各种合作方法,以开发创新的方法,在适当的速度下对人类进行 COVID-19 病例的筛查、检测和诊断。此外,强调了与第四次工业革命技术相关的计算模型在实现这一目标方面的效用。然而,在 COVID-19 病例的检测和预测准确性以及感染人员接触者的追踪方面存在差距。本文回顾了可以采用的计算模型,以提高检测和预测 COVID-19 大流行病例的性能。我们专注于可以在当前大流行中采用的大数据、人工智能 (AI) 和受自然启发的计算 (NIC) 模型。审查表明,人工智能模型已用于 COVID-19 的病例检测。同样,大数据平台也已用于追踪接触者。然而,在医学问题的特征选择方面表现出良好性能的受自然启发的计算 (NIC) 模型尚未在当前 COVID-19 大流行中用于病例检测和接触者追踪。这项研究对从业者和研究人员都具有重要意义,因为它阐明了 NIC 在准确检测大流行病例和优化接触者追踪方面的潜力。

相似文献

7
Predicting COVID-19 spread in the face of control measures in West Africa.预测西非控制措施下的 COVID-19 传播。
Math Biosci. 2020 Oct;328:108431. doi: 10.1016/j.mbs.2020.108431. Epub 2020 Jul 29.
9
Artificial Intelligence (AI) applications for COVID-19 pandemic.用于2019冠状病毒病大流行的人工智能(AI)应用程序。
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):337-339. doi: 10.1016/j.dsx.2020.04.012. Epub 2020 Apr 14.

引用本文的文献

3
The Impact of Artificial Intelligence on Microbial Diagnosis.人工智能对微生物诊断的影响。
Microorganisms. 2024 May 23;12(6):1051. doi: 10.3390/microorganisms12061051.
9
Human behavior in the time of COVID-19: Learning from big data.新冠疫情期间的人类行为:从大数据中学习
Front Big Data. 2023 Apr 6;6:1099182. doi: 10.3389/fdata.2023.1099182. eCollection 2023.

本文引用的文献

5
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.一种用于筛查2019冠状病毒病肺炎的深度学习系统。
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.
6
Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review.智能计算在COVID-19预后中的作用:最新综述
Chaos Solitons Fractals. 2020 Sep;138:109947. doi: 10.1016/j.chaos.2020.109947. Epub 2020 May 29.
8
Spatial analysis and GIS in the study of COVID-19. A review.空间分析和 GIS 在 COVID-19 研究中的应用。综述。
Sci Total Environ. 2020 Oct 15;739:140033. doi: 10.1016/j.scitotenv.2020.140033. Epub 2020 Jun 8.
10
A review of modern technologies for tackling COVID-19 pandemic.应对新冠疫情的现代技术综述。
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):569-573. doi: 10.1016/j.dsx.2020.05.008. Epub 2020 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验