Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
Molecules. 2020 Jul 24;25(15):3362. doi: 10.3390/molecules25153362.
Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.
天然生物大分子,如结构蛋白和多糖,由生命的基本构建块组成:氨基酸和碳水化合物。理解它们在溶剂(如离子液体 (ILs))中的分子结构、自组装和相互作用,对于释放大量新材料至关重要,这将彻底改变我们用具有可调物理化学性质的多结构和多功能系统制造的方式。离子液体优于有机溶剂,因为它们不会产生不需要的副产物,并且由于其可重复使用性而被认为是绿色替代品。此外,它们将显著提高生物聚合物与其他材料的混溶性,同时保持最终产品中生物聚合物的机械性能。理解和控制生物聚合物在离子液体基质中的物理化学性质对于取得能够制造坚固的多层次结构 1D 纤维材料的进展至关重要。它还有助于预测纤维构象与蛋白质二级结构或碳水化合物结晶度之间的关系,从而为细胞生长信号传导、离子导电性、液体扩散和热导率创造潜在应用,并在生物医学和环境科学中有几个应用。这也将使具有有用功能和可定制选项的生物聚合物复合纤维材料的再生成为可能,这些功能和选项对于增材制造至关重要。这些纤维材料的特定性能已被证明因包括静电纺丝和后处理在内的制造方法而异。本综述旨在提供有关这些常用蛋白质和多糖生物聚合物及其在各种离子液体中的纤维制造方法的基础知识,以及后处理对这些纤维材料及其在生物医学和药物研究、伤口愈合、环境过滤以及可持续和绿色化学研究中的应用的影响。
Adv Biochem Eng Biotechnol. 2019
Int J Biol Macromol. 2019-3-28
Biotechnol J. 2019-11-19
Biomacromolecules. 2007-9
ACS Appl Bio Mater. 2021-5-17
Int J Biol Macromol. 2021-1-15
Polymers (Basel). 2024-12-23
Materials (Basel). 2023-2-22
Polymers (Basel). 2022-9-10
Polymers (Basel). 2022-7-26
Int J Mol Sci. 2022-1-26
Polymers (Basel). 2021-8-29
Polymers (Basel). 2021-6-7
Polymers (Basel). 2021-5-29
Front Chem. 2020-12-23
ACS Biomater Sci Eng. 2019-11-11
Int J Biol Macromol. 2020-1-10
Biomacromolecules. 2019-10-15
Carbohydr Polym. 2018-9-6
Nano Lett. 2018-10-4
Carbohydr Polym. 2018-8-18