文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子液体衍生的蛋白质和多糖基纤维材料:综述。

Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review.

机构信息

Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.

Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.

出版信息

Molecules. 2020 Jul 24;25(15):3362. doi: 10.3390/molecules25153362.


DOI:10.3390/molecules25153362
PMID:32722182
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7435976/
Abstract

Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.

摘要

天然生物大分子,如结构蛋白和多糖,由生命的基本构建块组成:氨基酸和碳水化合物。理解它们在溶剂(如离子液体 (ILs))中的分子结构、自组装和相互作用,对于释放大量新材料至关重要,这将彻底改变我们用具有可调物理化学性质的多结构和多功能系统制造的方式。离子液体优于有机溶剂,因为它们不会产生不需要的副产物,并且由于其可重复使用性而被认为是绿色替代品。此外,它们将显著提高生物聚合物与其他材料的混溶性,同时保持最终产品中生物聚合物的机械性能。理解和控制生物聚合物在离子液体基质中的物理化学性质对于取得能够制造坚固的多层次结构 1D 纤维材料的进展至关重要。它还有助于预测纤维构象与蛋白质二级结构或碳水化合物结晶度之间的关系,从而为细胞生长信号传导、离子导电性、液体扩散和热导率创造潜在应用,并在生物医学和环境科学中有几个应用。这也将使具有有用功能和可定制选项的生物聚合物复合纤维材料的再生成为可能,这些功能和选项对于增材制造至关重要。这些纤维材料的特定性能已被证明因包括静电纺丝和后处理在内的制造方法而异。本综述旨在提供有关这些常用蛋白质和多糖生物聚合物及其在各种离子液体中的纤维制造方法的基础知识,以及后处理对这些纤维材料及其在生物医学和药物研究、伤口愈合、环境过滤以及可持续和绿色化学研究中的应用的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/f3394e0283d1/molecules-25-03362-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/4194eab3b66a/molecules-25-03362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/1f242c5af0c9/molecules-25-03362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/f7a3f3a5d04b/molecules-25-03362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/d6609b71496f/molecules-25-03362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/4ffa509f3b6e/molecules-25-03362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/d41a1c0899c7/molecules-25-03362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/1c08cf949da9/molecules-25-03362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/666811bf0b8a/molecules-25-03362-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/2e146ac9e378/molecules-25-03362-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/82fa7726e3d3/molecules-25-03362-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/f3394e0283d1/molecules-25-03362-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/4194eab3b66a/molecules-25-03362-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/1f242c5af0c9/molecules-25-03362-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/f7a3f3a5d04b/molecules-25-03362-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/d6609b71496f/molecules-25-03362-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/4ffa509f3b6e/molecules-25-03362-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/d41a1c0899c7/molecules-25-03362-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/1c08cf949da9/molecules-25-03362-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/666811bf0b8a/molecules-25-03362-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/2e146ac9e378/molecules-25-03362-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/82fa7726e3d3/molecules-25-03362-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6d/7435976/f3394e0283d1/molecules-25-03362-g011.jpg

相似文献

[1]
Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review.

Molecules. 2020-7-24

[2]
Biopolymer-Based Composite Materials Prepared Using Ionic Liquids.

Adv Biochem Eng Biotechnol. 2019

[3]
A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids.

Molecules. 2021-1-4

[4]
Solubility of lignin and chitin in ionic liquids and their biomedical applications.

Int J Biol Macromol. 2019-3-28

[5]
Recent Advances of Using Ionic Liquids for Biopolymer Extraction and Processing.

Biotechnol J. 2019-11-19

[6]
Fabrication and characterization of polysaccharide ion gels with ionic liquids and their further conversion into value-added sustainable materials.

Biomolecules. 2015-3-18

[7]
Applications of ionic liquids in carbohydrate chemistry: a window of opportunities.

Biomacromolecules. 2007-9

[8]
Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends.

ACS Appl Bio Mater. 2021-5-17

[9]
Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials.

Int J Mol Sci. 2023-4-26

[10]
Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications.

Int J Biol Macromol. 2021-1-15

引用本文的文献

[1]
Ultrasonic-assisted refinement of domesticated-wild silk protein composite nanofibers: enhancing miscibility, uniformity, and functionality via ionic liquid processing.

Ultrason Sonochem. 2025-7-30

[2]
Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres.

Polymers (Basel). 2024-12-23

[3]
Double-Reinforced Fish Gelatin Composite Scaffolds for Osteochondral Substitutes.

Materials (Basel). 2023-2-22

[4]
Functional Polymer and Packaging Technology for Bakery Products.

Polymers (Basel). 2022-9-10

[5]
Novel Trends in Hydrogel Development for Biomedical Applications: A Review.

Polymers (Basel). 2022-7-26

[6]
Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications.

Int J Mol Sci. 2022-1-26

[7]
Silk-Cellulose Acetate Biocomposite Materials Regenerated from Ionic Liquid.

Polymers (Basel). 2021-8-29

[8]
Closing the Loop with Keratin-Rich Fibrous Materials.

Polymers (Basel). 2021-6-7

[9]
Enhanced Cellular Uptake in an Electrostatically Interacting Fucoidan-L-Arginine Fiber Complex.

Polymers (Basel). 2021-5-29

[10]
Use of Ionic Liquids in Protein and DNA Chemistry.

Front Chem. 2020-12-23

本文引用的文献

[1]
Highly Protein Repellent and Antiadhesive Polysaccharide Biomaterial Coating for Urinary Catheter Applications.

ACS Biomater Sci Eng. 2019-11-11

[2]
The Impact of Composition and Morphology on Ionic Conductivity of Silk/Cellulose Bio-Composites Fabricated from Ionic Liquid and Varying Percentages of Coagulation Agents.

Int J Mol Sci. 2020-6-30

[3]
Facile treatment to fine-tune cellulose crystals in cellulose-silk biocomposites through hydrogen peroxide.

Int J Biol Macromol. 2020-1-10

[4]
Silk Fibroin Dissolution in Tetrabutylammonium Hydroxide Aqueous Solution.

Biomacromolecules. 2019-10-15

[5]
Calibration between trigger and color: Neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly.

J Biol Chem. 2019-9-26

[6]
Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(II) from aqueous systems.

Carbohydr Polym. 2019-7-1

[7]
Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films.

Int J Mol Sci. 2018-10-24

[8]
Modification of chitin structure with tailored ionic liquids.

Carbohydr Polym. 2018-9-6

[9]
Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics.

Nano Lett. 2018-10-4

[10]
Regeneration of cellulose dissolved in ionic liquid using laser-heated melt-electrospinning.

Carbohydr Polym. 2018-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索