Mohan Tamilselvan, Čas Alja, Bračič Matej, Plohl Olivija, Vesel Alenka, Rupnik Maja, Zemljič Lidija Fras, Rebol Janez
Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia.
Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova 30, Ljubljana SI-1000, Slovenia.
ACS Biomater Sci Eng. 2019 Nov 11;5(11):5825-5832. doi: 10.1021/acsbiomaterials.9b01288. Epub 2019 Oct 14.
Engineering functional biomaterials surfaces that resist biofilm formation triggered by unspecific protein adsorption is a key challenge, and these biosurfaces hold a huge potential in implant-associated infection. Herein, we report a water-based facile approach to install carboxylated-hyaluronic acid and sulfated-fucoidan on cationically tethered polydimethylsiloxane (PDMS) implant. We showed that these hydrophilic, charged, polysaccharide-based biosurfaces/biocoatings provide long-term stability, no adsorption of proteins (albumin and fibrinogen), similar to zwitterionic polymers, and enhanced resistance to plasma deposition and growth of pathogen. These findings shall pave the way in developing novel biocoatings, thereby broadening the applicability of PDMS-based implants in complex biological applications.
设计出能够抵抗由非特异性蛋白质吸附引发的生物膜形成的功能性生物材料表面是一项关键挑战,并且这些生物表面在植入物相关感染方面具有巨大潜力。在此,我们报告了一种基于水的简便方法,用于在阳离子连接的聚二甲基硅氧烷(PDMS)植入物上安装羧化透明质酸和硫酸化岩藻多糖。我们表明,这些基于多糖的亲水性、带电生物表面/生物涂层具有长期稳定性,不吸附蛋白质(白蛋白和纤维蛋白原),类似于两性离子聚合物,并且增强了对病原体的血浆沉积和生长的抵抗力。这些发现将为开发新型生物涂层铺平道路,从而拓宽基于PDMS的植入物在复杂生物应用中的适用性。