Suppr超能文献

脊髓损伤患者的神经假体。

Neuroprosthesis for individuals with spinal cord injury.

机构信息

Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Neurol Res. 2023 Oct;45(10):893-905. doi: 10.1080/01616412.2020.1798106. Epub 2020 Jul 30.

Abstract

OBJECTIVE

Individuals who sustain a traumatic spinal cord injury (SCI) often have a loss of multiple body systems. Significant functional improvement can be gained by individual SCI through the use of neuroprostheses based on electrical stimulation. The most common actions produced are grasp, overhead reach, trunk posture, standing, stepping, bladder/bowel/sexual function, and respiratory functions.

METHODS

We review the fundamental principles of electrical stimulation, which are established, allowing stimulation to be safely delivered through implanted devices for many decades. We review four common clinical applications for SCI, including grasp/reach, standing/stepping, bladder/bowel function, and respiratory functions. Systems used to implement these functions have many common features, but are also customized based on the functional goals of each approach. Further, neuroprosthetic systems are customized based on the needs of each user.

RESULTS & CONCLUSION: The results to date show that implanted neuroprostheses can have a significant impact on the health, function, and quality of life for individuals with SCI. A key focus for the future is to make implanted neuroprostheses broadly available to the SCI population.

摘要

目的

患有创伤性脊髓损伤 (SCI) 的个体通常会失去多个身体系统。通过使用基于电刺激的神经假体,个体 SCI 可以获得显著的功能改善。最常见的动作是抓握、头顶伸展、躯干姿势、站立、行走、膀胱/肠道/性功能和呼吸功能。

方法

我们回顾了电刺激的基本原理,这些原理已经确立,可以通过植入设备安全地进行数十年的刺激。我们回顾了 SCI 的四种常见临床应用,包括抓握/伸展、站立/行走、膀胱/肠道功能和呼吸功能。用于实现这些功能的系统具有许多共同的特点,但也根据每种方法的功能目标进行定制。此外,神经假体系统还根据每个用户的需求进行定制。

结果与结论

迄今为止的结果表明,植入式神经假体可以对 SCI 患者的健康、功能和生活质量产生重大影响。未来的一个重点是使植入式神经假体广泛应用于 SCI 人群。

相似文献

1
Neuroprosthesis for individuals with spinal cord injury.
Neurol Res. 2023 Oct;45(10):893-905. doi: 10.1080/01616412.2020.1798106. Epub 2020 Jul 30.
2
Neuroprosthetic technology for individuals with spinal cord injury.
J Spinal Cord Med. 2013 Jul;36(4):258-72. doi: 10.1179/2045772313Y.0000000128.
4
Implanted stimulators for restoration of function in spinal cord injury.
Med Eng Phys. 2001 Jan;23(1):19-28. doi: 10.1016/s1350-4533(01)00012-1.
5
Implantable neuroprosthetic technology.
NeuroRehabilitation. 2009;25(1):69-83. doi: 10.3233/NRE-2009-0500.
6
Exploratory study of perceived quality of life with implanted standing neuroprostheses.
J Rehabil Res Dev. 2012;49(2):265-78. doi: 10.1682/jrrd.2010.08.0156.
8
Evolution of Neuroprosthetic Approaches to Restoration of Upper Extremity Function in Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2018 Summer;24(3):252-264. doi: 10.1310/sci2403-252.
9
[Functional rehabilitation of spinal cord injured persons using neuroprostheses].
Orthopade. 2005 Feb;34(2):144-51. doi: 10.1007/s00132-004-0756-7.
10
[Research on the progress of neuroprosthesis for the limb motor system].
Zhongguo Yi Liao Qi Xie Za Zhi. 2006 Jul;30(4):235-40.

引用本文的文献

3
A new modular neuroprosthesis suitable for hybrid FES-robot applications and tailored assistance.
J Neuroeng Rehabil. 2024 Sep 4;21(1):153. doi: 10.1186/s12984-024-01450-6.
4
Application of cord blood-derived platelet-rich plasma in the treatment of diseases.
J Int Med Res. 2024 Jul;52(7):3000605241263729. doi: 10.1177/03000605241263729.
5
Peripheral nerve blocks of wrist and finger flexors can increase hand opening in chronic hemiparetic stroke.
Front Neurol. 2024 Feb 21;15:1284780. doi: 10.3389/fneur.2024.1284780. eCollection 2024.
8
Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury.
Brain Commun. 2021 Oct 21;3(4):fcab248. doi: 10.1093/braincomms/fcab248. eCollection 2021.
10
Design and Testing of Stimulation and Myoelectric Recording Modules in an Implanted Distributed Neuroprosthetic System.
IEEE Trans Biomed Circuits Syst. 2021 Apr;15(2):281-293. doi: 10.1109/TBCAS.2021.3066838. Epub 2021 May 25.

本文引用的文献

2
Evolution of Neuroprosthetic Approaches to Restoration of Upper Extremity Function in Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2018 Summer;24(3):252-264. doi: 10.1310/sci2403-252.
3
Advanced Assessment of the Upper Limb in Tetraplegia: A Three-Tiered Approach to Characterizing Paralysis.
Top Spinal Cord Inj Rehabil. 2018 Summer;24(3):206-216. doi: 10.1310/sci2403-206.
4
Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jun;26(6):1272-1278. doi: 10.1109/TNSRE.2018.2834339.
5
In complete SCI patients, long-term functional electrical stimulation of permanent denervated muscles increases epidermis thickness.
Neurol Res. 2018 Apr;40(4):277-282. doi: 10.1080/01616412.2018.1436877. Epub 2018 Feb 15.
6
At-home genital nerve stimulation for individuals with SCI and neurogenic detrusor overactivity: A pilot feasibility study.
J Spinal Cord Med. 2019 May;42(3):360-370. doi: 10.1080/10790268.2017.1422881. Epub 2018 Jan 15.
8
Case report: Minimally invasive method to activate the expiratory muscles to restore cough.
J Spinal Cord Med. 2018 Sep;41(5):562-566. doi: 10.1080/10790268.2017.1357916. Epub 2017 Oct 11.
9
Long-Term Performance and User Satisfaction With Implanted Neuroprostheses for Upright Mobility After Paraplegia: 2- to 14-Year Follow-Up.
Arch Phys Med Rehabil. 2018 Feb;99(2):289-298. doi: 10.1016/j.apmr.2017.08.470. Epub 2017 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验