Suppr超能文献

使用马尔可夫链方法估计残疾的发作次数和持续时间。

Estimating the number and length of episodes in disability using a Markov chain approach.

机构信息

Laboratory of Population Health, Max Planck Institute for Demographic Research, Konrad-Zuse-Str. 1, Rostock, 18057, Germany.

Department of Social Policy, London School of Economics and Political Science, London, UK.

出版信息

Popul Health Metr. 2020 Jul 29;18(1):15. doi: 10.1186/s12963-020-00217-0.

Abstract

BACKGROUND

Markov models are a key tool for calculating expected time spent in a state, such as active life expectancy and disabled life expectancy. In reality, individuals often enter and exit states recurrently, but standard analytical approaches are not able to describe this dynamic. We develop an analytical matrix approach to calculating the expected number and length of episodes spent in a state.

METHODS

The approach we propose is based on Markov chains with rewards. It allows us to identify the number of entries into a state and to calculate the average length of episodes as total time in a state divided by the number of entries. For sampling variance estimation, we employ the block bootstrap. Two case studies that are based on published literature illustrate how our methods can provide new insights into disability dynamics.

RESULTS

The first application uses a classic textbook example on prednisone treatment and liver functioning among liver cirrhosis patients. We replicate well-known results of no association between treatment and survival or recovery. Our analysis of the episodes of normal liver functioning delivers the new insight that the treatment reduced the likelihood of relapse and extended episodes of normal liver functioning. The second application assesses frailty and disability among elderly people. We replicate the prior finding that frail individuals have longer life expectancy in disability. As a novel finding, we document that frail individuals experience three times as many episodes of disability that were on average twice as long as the episodes of nonfrail individuals.

CONCLUSIONS

We provide a simple analytical approach for calculating the number and length of episodes in Markov chain models. The results allow a description of the transition dynamics that goes beyond the results that can be obtained using standard tools for Markov chains. Empirical applications using published data illustrate how the new method is helpful in unraveling the dynamics of the modeled process.

摘要

背景

马尔可夫模型是计算处于特定状态(如活跃预期寿命和残疾预期寿命)的时间的关键工具。实际上,个体通常会反复进入和离开状态,但标准分析方法无法描述这种动态。我们开发了一种分析矩阵方法来计算处于特定状态的事件数量和长度。

方法

我们提出的方法基于具有奖励的马尔可夫链。它使我们能够确定进入特定状态的次数,并计算处于该状态的总时间除以进入次数的事件平均长度。为了进行抽样方差估计,我们采用了块 bootstrap 方法。两个基于已发表文献的案例研究说明了我们的方法如何为残疾动态提供新的见解。

结果

第一个应用使用了关于肝硬化患者泼尼松治疗和肝功能的经典教科书案例。我们复制了治疗与生存或恢复之间无关联的知名结果。我们对正常肝功能的事件进行分析,得出了新的见解,即治疗降低了复发的可能性并延长了正常肝功能的持续时间。第二个应用评估了老年人的脆弱性和残疾。我们复制了脆弱个体在残疾中具有更长预期寿命的先前发现。作为一个新的发现,我们记录到脆弱个体经历的残疾事件次数是不脆弱个体的三倍,且平均持续时间是不脆弱个体的两倍。

结论

我们提供了一种简单的分析方法来计算马尔可夫链模型中的事件数量和长度。结果允许描述超越使用标准马尔可夫链工具可获得的结果的转换动态。使用已发表数据的实证应用说明了新方法如何有助于揭示所建模过程的动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6d/7389377/1172d24bcccd/12963_2020_217_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验