Vial J, Huchedé P, Fagault S, Basset F, Rossi M, Geoffray J, Soldati H, Bisaccia J, Elsensohn M H, Creveaux M, Neves D, Blay J Y, Fauvelle F, Bouquet F, Streichenberger N, Corradini N, Bergeron C, Maucort-Boulch D, Castets P, Carré M, Weber K, Castets M
Cell death and Childhood Cancers Laboratory-Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.
Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France.
Cell Death Discov. 2020 Jul 24;6:64. doi: 10.1038/s41420-020-00302-1. eCollection 2020.
Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes: ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
横纹肌肉瘤(RMS)是儿童软组织肉瘤最常见的形式。它主要分为两种亚型:胚胎型横纹肌肉瘤(ERMS)和腺泡状横纹肌肉瘤(ARMS)。目前的治疗方法包括化疗、手术和放疗。尽管进行了多项临床试验,但自2000年以来,5年生存率一直稳定在70%。RMS细胞被认为起源于肌肉谱系。在发育过程中,肌生成包括肌肉前体细胞的扩增、通过细胞死亡清除多余的细胞以及将剩余的细胞分化为肌纤维。肿瘤细胞可能会劫持这些过程以维持其致癌转化的观点已经出现,RMS被认为是肌生成的阴暗面。因此,剖析肌源性发育程序可以增进我们对RMS分子病因的理解。我们在此聚焦于ANT1,它参与肌生成,并与肌肉退化相关的遗传疾病有关。ANT1是一种线粒体蛋白,具有双重功能,它既通过调节线粒体中ATP/ADP的释放参与代谢,又作为线粒体通透性转换孔的一部分参与调控细胞死亡。对转录组数据集的生物信息学分析表明,ANT1在RMS中低表达。使用CRISPR-Cas9技术,我们发现ANT1表达降低在增殖和抗应激诱导死亡方面赋予RMS细胞选择性优势。这些效应尤其源于ANT1下调诱导的异常代谢转换。使用Tet-On系统恢复ANT1表达足以使肿瘤细胞启动死亡并增加其对化疗的敏感性。基于我们的研究结果,调节ANT1表达和/或活性似乎是RMS治疗中一种有吸引力的治疗方法。