文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种使用统一知识蒸馏预训练框架的可推广病理学基础模型。

A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

作者信息

Ma Jiabo, Guo Zhengrui, Zhou Fengtao, Wang Yihui, Xu Yingxue, Li Jinbang, Yan Fang, Cai Yu, Zhu Zhengjie, Jin Cheng, Lin Yi, Jiang Xinrui, Zhao Chenglong, Li Danyi, Han Anjia, Li Zhenhui, Chan Ronald Cheong Kin, Wang Jiguang, Fei Peng, Cheng Kwang-Ting, Zhang Shaoting, Liang Li, Chen Hao

机构信息

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.

Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

出版信息

Nat Biomed Eng. 2025 Sep 2. doi: 10.1038/s41551-025-01488-4.


DOI:10.1038/s41551-025-01488-4
PMID:40897898
Abstract

The generalization ability of foundation models in the field of computational pathology (CPath) is crucial for their clinical success. However, current foundation models have only been evaluated on a limited type and number of tasks, leaving their generalization ability unclear. We establish a comprehensive benchmark to evaluate the performance of off-the-shelf foundation models across six distinct clinical task types, encompassing a total of 72 specific tasks. Our findings reveal that existing foundation models excel at certain task types but struggle to effectively handle the full breadth of clinical tasks. To improve the generalization of pathology foundation models, we propose a unified knowledge distillation framework consisting of both expert and self knowledge distillation, where the former allows the model to learn from the knowledge of multiple expert models, while the latter leverages self distillation to enable image representation learning via local-global alignment. On the basis of this framework, we develop a Generalizable Pathology Foundation Model (GPFM). Evaluated on the established benchmark, GPFM achieves an average rank of 1.6, ranking first in 42 tasks, positioning it as a promising method for feature representation in CPath.

摘要

基础模型在计算病理学(CPath)领域的泛化能力对其临床应用的成功至关重要。然而,目前的基础模型仅在有限类型和数量的任务上进行了评估,其泛化能力尚不清楚。我们建立了一个综合基准,以评估现成基础模型在六种不同临床任务类型中的表现,涵盖总共72个具体任务。我们的研究结果表明,现有基础模型在某些任务类型上表现出色,但难以有效处理所有临床任务。为了提高病理学基础模型的泛化能力,我们提出了一个统一的知识蒸馏框架,包括专家知识蒸馏和自知识蒸馏,前者使模型能够从多个专家模型的知识中学习,而后者利用自蒸馏通过局部-全局对齐实现图像表征学习。在此框架的基础上,我们开发了一个可泛化的病理学基础模型(GPFM)。在既定基准上进行评估时,GPFM的平均排名为1.6,在42个任务中排名第一,使其成为CPath中特征表征的一种有前景的方法。

相似文献

[1]
A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

Nat Biomed Eng. 2025-9-2

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
MedAlmighty: enhancing disease diagnosis with large vision model distillation.

Front Artif Intell. 2025-8-12

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Distilling knowledge from graph neural networks trained on cell graphs to non-neural student models.

Sci Rep. 2025-8-10

[8]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[10]
Enhancing Clinical Relevance of Pretrained Language Models Through Integration of External Knowledge: Case Study on Cardiovascular Diagnosis From Electronic Health Records.

JMIR AI. 2024-8-6

本文引用的文献

[1]
A pathology foundation model for cancer diagnosis and prognosis prediction.

Nature. 2024-10

[2]
A foundation model for clinical-grade computational pathology and rare cancers detection.

Nat Med. 2024-10

[3]
A comprehensive AI model development framework for consistent Gleason grading.

Commun Med (Lond). 2024-5-9

[4]
Domain generalization across tumor types, laboratories, and species - Insights from the 2022 edition of the Mitosis Domain Generalization Challenge.

Med Image Anal. 2024-5

[5]
DiagSet: a dataset for prostate cancer histopathological image classification.

Sci Rep. 2024-3-21

[6]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[7]
A visual-language foundation model for computational pathology.

Nat Med. 2024-3

[8]
An interpretable machine learning system for colorectal cancer diagnosis from pathology slides.

NPJ Precis Oncol. 2024-3-5

[9]
Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer.

NPJ Digit Med. 2024-1-18

[10]
Social network analysis of cell networks improves deep learning for prediction of molecular pathways and key mutations in colorectal cancer.

Med Image Anal. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索