Ma Jiabo, Guo Zhengrui, Zhou Fengtao, Wang Yihui, Xu Yingxue, Li Jinbang, Yan Fang, Cai Yu, Zhu Zhengjie, Jin Cheng, Lin Yi, Jiang Xinrui, Zhao Chenglong, Li Danyi, Han Anjia, Li Zhenhui, Chan Ronald Cheong Kin, Wang Jiguang, Fei Peng, Cheng Kwang-Ting, Zhang Shaoting, Liang Li, Chen Hao
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
Nat Biomed Eng. 2025 Sep 2. doi: 10.1038/s41551-025-01488-4.
The generalization ability of foundation models in the field of computational pathology (CPath) is crucial for their clinical success. However, current foundation models have only been evaluated on a limited type and number of tasks, leaving their generalization ability unclear. We establish a comprehensive benchmark to evaluate the performance of off-the-shelf foundation models across six distinct clinical task types, encompassing a total of 72 specific tasks. Our findings reveal that existing foundation models excel at certain task types but struggle to effectively handle the full breadth of clinical tasks. To improve the generalization of pathology foundation models, we propose a unified knowledge distillation framework consisting of both expert and self knowledge distillation, where the former allows the model to learn from the knowledge of multiple expert models, while the latter leverages self distillation to enable image representation learning via local-global alignment. On the basis of this framework, we develop a Generalizable Pathology Foundation Model (GPFM). Evaluated on the established benchmark, GPFM achieves an average rank of 1.6, ranking first in 42 tasks, positioning it as a promising method for feature representation in CPath.
基础模型在计算病理学(CPath)领域的泛化能力对其临床应用的成功至关重要。然而,目前的基础模型仅在有限类型和数量的任务上进行了评估,其泛化能力尚不清楚。我们建立了一个综合基准,以评估现成基础模型在六种不同临床任务类型中的表现,涵盖总共72个具体任务。我们的研究结果表明,现有基础模型在某些任务类型上表现出色,但难以有效处理所有临床任务。为了提高病理学基础模型的泛化能力,我们提出了一个统一的知识蒸馏框架,包括专家知识蒸馏和自知识蒸馏,前者使模型能够从多个专家模型的知识中学习,而后者利用自蒸馏通过局部-全局对齐实现图像表征学习。在此框架的基础上,我们开发了一个可泛化的病理学基础模型(GPFM)。在既定基准上进行评估时,GPFM的平均排名为1.6,在42个任务中排名第一,使其成为CPath中特征表征的一种有前景的方法。
2025-1
Front Artif Intell. 2025-8-12
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2017-12-22
Commun Med (Lond). 2024-5-9
NPJ Precis Oncol. 2024-3-5