2019冠状病毒病的血管影响:放射影像学、人工智能和组织特征分析的作用:特别报告

Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report.

作者信息

Khanna Narendra N, Maindarkar Mahesh, Puvvula Anudeep, Paul Sudip, Bhagawati Mrinalini, Ahluwalia Puneet, Ruzsa Zoltan, Sharma Aditya, Munjral Smiksha, Kolluri Raghu, Krishnan Padukone R, Singh Inder M, Laird John R, Fatemi Mostafa, Alizad Azra, Dhanjil Surinder K, Saba Luca, Balestrieri Antonella, Faa Gavino, Paraskevas Kosmas I, Misra Durga Prasanna, Agarwal Vikas, Sharma Aman, Teji Jagjit, Al-Maini Mustafa, Nicolaides Andrew, Rathore Vijay, Naidu Subbaram, Liblik Kiera, Johri Amer M, Turk Monika, Sobel David W, Pareek Gyan, Miner Martin, Viskovic Klaudija, Tsoulfas George, Protogerou Athanasios D, Mavrogeni Sophie, Kitas George D, Fouda Mostafa M, Kalra Manudeep K, Suri Jasjit S

机构信息

Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India.

Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA.

出版信息

J Cardiovasc Dev Dis. 2022 Aug 15;9(8):268. doi: 10.3390/jcdd9080268.

Abstract

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发了一场全球大流行,全球近8000万人感染,死亡人数超过600万。从症状变得严重开始计算,平均存活时间仅为14天。本研究描述了SARS-CoV-2导致的肺部、肾脏、冠状动脉和颈动脉的深层血管损伤。这份特别报告填补了文献中的一个重要空白,即了解(i)血管损伤的病理生理学以及医学成像在可视化SARS-CoV-2造成的损伤中的作用,以及(ii)使用基于人工智能(AI)的组织表征(TC)进一步了解新冠肺炎的严重程度。采用系统评价与荟萃分析优先报告项目(PRISMA)来选择296项基于AI的TC研究。选择磁共振成像(MRI)、计算机断层扫描(CT)和超声等放射成像技术对感染新冠肺炎病毒的脉管系统进行成像。提出了四种假说来展示新冠肺炎在放射图像中造成的血管损伤。使用了三种AI模型,即机器学习、深度学习和迁移学习进行TC分析。此外,该研究还提出了改进基于AI的血管研究架构的建议。我们得出结论,尽管新冠肺炎导致多器官功能障碍,但不同血管类型中由其引起的血管损伤过程具有相似性。虽然感染患者的死亡率约为2%,但仍需监测新冠肺炎的长期影响以避免死亡。AI似乎正在以极快的速度渗透到医疗行业,我们预计它将在患者护理中发挥新作用,降低死亡率和发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d873/9409845/afd555a9ac81/jcdd-09-00268-g021.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索