Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, 200237, China.
Angew Chem Int Ed Engl. 2020 Nov 16;59(47):21143-21150. doi: 10.1002/anie.202009380. Epub 2020 Sep 7.
Unpredictable in vivo therapeutic feedback of hydroxyl radical ( OH) efficiency is the major bottleneck of chemodynamic therapy. Herein, we describe novel Fenton-based nanotheranostics NQ-Cy@Fe&GOD for spatio-temporally reporting intratumor OH-mediated treatment, which innovatively unites dual-channel near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) signals. Specifically, MRI signal traces the dose distribution of Fenton-based iron oxide nanoparticles (IONPs) with high-spatial resolution, meanwhile timely fluorescence signal quantifies OH-mediated therapeutic response with high spatio-temporal resolution. NQ-Cy@Fe&GOD can successfully monitor the intracellular release of IONPs and OH-induced NQO1 enzyme in living cells and tumor-bearing mice, which makes a breakthrough in conquering the inherent unpredictable obstacles on spatio-temporally reporting chemodynamic therapy, so as to manipulate dose-dependent therapeutic process.
体内羟基自由基(OH)效率的治疗反馈不可预测是化学动力学治疗的主要瓶颈。在此,我们描述了一种基于芬顿的新型纳米治疗药物 NQ-Cy@Fe&GOD,用于时空报告肿瘤内 OH 介导的治疗,该药物创新性地结合了双通道近红外(NIR)荧光和磁共振成像(MRI)信号。具体来说,MRI 信号以高空间分辨率跟踪基于芬顿的氧化铁纳米颗粒(IONPs)的剂量分布,同时实时荧光信号以高时空分辨率定量 OH 介导的治疗反应。NQ-Cy@Fe&GOD 能够成功监测活细胞和荷瘤小鼠中 IONPs 的细胞内释放和 OH 诱导的 NQO1 酶,这在克服化学动力学治疗时空报告固有的不可预测障碍方面取得了突破,从而能够控制剂量依赖性的治疗过程。