Suppr超能文献

英国使用人工智能对新冠病毒病进行预后建模:模型开发与验证

Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.

作者信息

Abdulaal Ahmed, Patel Aatish, Charani Esmita, Denny Sarah, Mughal Nabeela, Moore Luke

机构信息

Chelsea and Westminster NHS Foundation Trust, London, United Kingdom.

NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom.

出版信息

J Med Internet Res. 2020 Aug 25;22(8):e20259. doi: 10.2196/20259.

Abstract

BACKGROUND

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency and the case fatality rate in the United Kingdom is significant. Although there appear to be several early predictors of outcome, there are no currently validated prognostic models or scoring systems applicable specifically to patients with confirmed SARS-CoV-2.

OBJECTIVE

We aim to create a point-of-admission mortality risk scoring system using an artificial neural network (ANN).

METHODS

We present an ANN that can provide a patient-specific, point-of-admission mortality risk prediction to inform clinical management decisions at the earliest opportunity. The ANN analyzes a set of patient features including demographics, comorbidities, smoking history, and presenting symptoms and predicts patient-specific mortality risk during the current hospital admission. The model was trained and validated on data extracted from 398 patients admitted to hospital with a positive real-time reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2.

RESULTS

Patient-specific mortality was predicted with 86.25% accuracy, with a sensitivity of 87.50% (95% CI 61.65%-98.45%) and specificity of 85.94% (95% CI 74.98%-93.36%). The positive predictive value was 60.87% (95% CI 45.23%-74.56%), and the negative predictive value was 96.49% (95% CI 88.23%-99.02%). The area under the receiver operating characteristic curve was 90.12%.

CONCLUSIONS

This analysis demonstrates an adaptive ANN trained on data at a single site, which demonstrates the early utility of deep learning approaches in a rapidly evolving pandemic with no established or validated prognostic scoring systems.

摘要

背景

当前的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫情是一场公共卫生紧急事件,英国的病死率颇高。尽管似乎有几个早期预后指标,但目前尚无专门适用于确诊SARS-CoV-2患者的经过验证的预后模型或评分系统。

目的

我们旨在使用人工神经网络(ANN)创建一种入院时死亡风险评分系统。

方法

我们提出一种人工神经网络,它可以提供针对特定患者的入院时死亡风险预测,以便尽早为临床管理决策提供依据。该人工神经网络分析一组患者特征,包括人口统计学特征、合并症、吸烟史和就诊症状,并预测当前住院期间特定患者的死亡风险。该模型在从398例因SARS-CoV-2实时逆转录聚合酶链反应(RT-PCR)检测呈阳性而入院的患者中提取的数据上进行了训练和验证。

结果

特定患者死亡率的预测准确率为86.25%,敏感性为87.50%(95%可信区间61.65%-98.45%),特异性为85.94%(95%可信区间74.98%-93.36%)。阳性预测值为60.87%(95%可信区间45.23%-74.56%),阴性预测值为96.49%(95%可信区间88.23%-99.02%)。受试者工作特征曲线下面积为90.12%。

结论

该分析展示了一个在单一地点的数据上训练的自适应人工神经网络,这证明了深度学习方法在一场快速演变且尚无既定或经过验证的预后来看系统的大流行中的早期效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d68e/7451108/b45dd8e0fdaf/jmir_v22i8e20259_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验