College of Life Sciences, Nanjing Normal University, No. 1, WenYuan Road, Qi Xia District, Nanjing, 210023, Jiangsu Province, China; Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, ANGRAU, Tirupati, India.
Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, ANGRAU, Tirupati, India.
Microbiol Res. 2020 Nov;240:126562. doi: 10.1016/j.micres.2020.126562. Epub 2020 Jul 25.
In this study, we have attempted to develop a plant growth promoting rhizobacteria (PGPR) consortia against early-stage diseases in Arachis hypogaea (Groundnut crop) plantation of Andhra Pradesh, India. The dominant PGPRs were selected by considering the various plant growth and protection qualities, followed by characterisation and grouping based on compatibility to form a consortium of PGPRs [Group-1 includes EX-1 (Acinetobacter baumannii stain HAMBI 1846); EX-3 (Pseudomonas aeruginosa strain A1K319); EX-5 (Bacillus subterraneus strain CF1.9); KNL-1 (Bacillus subtilis strain JMP-B); CTR-4 (Enterobacter cloacae strain VITKJ1); ANT-4 (Bacillus subtilis strain SBMP4) and Group-2 includes EX-4 (Pseudomonas otitidis strain SLC8); KDP-4 (Pseudomonas aeruginosa strain Kasamber 11); NLR-4 (Bacillus species ADMK68); ANT-6 (Bacillus subtilis subsp. inaquosorum strain KCTC 13429)]. In addition to resistance to early stage pathogens, in both in vitro and pot experiments the PGPR consortium showed significantly higher germination rate and root induction (Aspergillus niger; A. flavus; Fusarium oxysporum) when compared to control and fertilizer treated groups. In addition, Group 2 was more successful in stimulating and protecting plant growth among the two groups of PGPRs developed. The PGPR consortia developed showed multiple plant growth characteristics, including phosphate solubilization, production of HCN and Indole acetic acid along with broad antagonism against the tested phytopathogens.
在这项研究中,我们试图针对印度安得拉邦的落花生(花生作物)种植园中早期疾病开发一种植物促生根际细菌(PGPR)共生体。选择优势 PGPR 时考虑了各种植物生长和保护特性,然后根据相容性进行特征描述和分组,形成 PGPR 共生体的组合[第 1 组包括 EX-1(鲍曼不动杆菌菌株 HAMBI 1846);EX-3(铜绿假单胞菌菌株 A1K319);EX-5(地衣芽孢杆菌菌株 CF1.9);KNL-1(枯草芽孢杆菌菌株 JMP-B);CTR-4(阴沟肠杆菌菌株 VITKJ1);ANT-4(枯草芽孢杆菌菌株 SBMP4)和第 2 组包括 EX-4(铜绿假单胞菌菌株 SLC8);KDP-4(铜绿假单胞菌菌株 Kasamber 11);NLR-4(芽孢杆菌属 ADMK68);ANT-6(枯草芽孢杆菌亚种 inaquosorum 菌株 KCTC 13429)]。除了对早期病原体的抗性外,PGPR 共生体在体外和盆栽实验中均表现出明显更高的发芽率和根诱导(黑曲霉;黄曲霉;尖孢镰刀菌),与对照和肥料处理组相比。此外,与两组开发的 PGPR 相比,第 2 组在刺激和保护植物生长方面更为成功。开发的 PGPR 共生体表现出多种植物生长特性,包括溶磷、产生 HCN 和吲哚乙酸,以及对测试植物病原体的广泛拮抗作用。