Suppr超能文献

一种稀疏共轭梯度自适应滤波器。

A Sparse Conjugate Gradient Adaptive Filter.

作者信息

Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093 USA.

出版信息

IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.

Abstract

In this letter, we propose a novel conjugate gradient (CG) adaptive filtering algorithm for online estimation of system responses that admit sparsity. Specifically, the Sparsity-promoting Conjugate Gradient (SCG) algorithm is developed based on iterative reweighting methods popular in the sparse signal recovery area. We propose an affine scaling transformation strategy within the reweighting framework, leading to an algorithm that allows the usage of a zero sparsity regularization coefficient. This enables SCG to leverage the sparsity of the system response if it already exists, while not compromising the optimization process. Simulation results show that SCG demonstrates improved convergence and steady-state properties over existing methods.

摘要

在本信函中,我们提出了一种新颖的共轭梯度(CG)自适应滤波算法,用于在线估计具有稀疏性的系统响应。具体而言,基于稀疏信号恢复领域中流行的迭代重加权方法,开发了稀疏促进共轭梯度(SCG)算法。我们在重加权框架内提出了一种仿射缩放变换策略,从而得到一种允许使用零稀疏正则化系数的算法。这使得SCG能够在不影响优化过程的情况下,利用系统响应已有的稀疏性。仿真结果表明,与现有方法相比,SCG具有更好的收敛性和稳态特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da23/7394291/5774bbc28279/nihms-1607352-f0001.jpg

相似文献

1
A Sparse Conjugate Gradient Adaptive Filter.一种稀疏共轭梯度自适应滤波器。
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.
2
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
3
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.SSGD:用于无偏深度神经网络剪枝的稀疏性促进随机梯度下降算法
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:5410-5414. doi: 10.1109/icassp40776.2020.9054436. Epub 2020 May 14.
4
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.

本文引用的文献

1
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.
2
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.
3
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.SSGD:用于无偏深度神经网络剪枝的稀疏性促进随机梯度下降算法
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:5410-5414. doi: 10.1109/icassp40776.2020.9054436. Epub 2020 May 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验