Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath
Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093 USA.
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.
In this letter, we propose a novel conjugate gradient (CG) adaptive filtering algorithm for online estimation of system responses that admit sparsity. Specifically, the Sparsity-promoting Conjugate Gradient (SCG) algorithm is developed based on iterative reweighting methods popular in the sparse signal recovery area. We propose an affine scaling transformation strategy within the reweighting framework, leading to an algorithm that allows the usage of a zero sparsity regularization coefficient. This enables SCG to leverage the sparsity of the system response if it already exists, while not compromising the optimization process. Simulation results show that SCG demonstrates improved convergence and steady-state properties over existing methods.
在本信函中,我们提出了一种新颖的共轭梯度(CG)自适应滤波算法,用于在线估计具有稀疏性的系统响应。具体而言,基于稀疏信号恢复领域中流行的迭代重加权方法,开发了稀疏促进共轭梯度(SCG)算法。我们在重加权框架内提出了一种仿射缩放变换策略,从而得到一种允许使用零稀疏正则化系数的算法。这使得SCG能够在不影响优化过程的情况下,利用系统响应已有的稀疏性。仿真结果表明,与现有方法相比,SCG具有更好的收敛性和稳态特性。