Suppr超能文献

通过非均匀扩散凝聚对数据进行粗粒化

Coarse Graining of Data via Inhomogeneous Diffusion Condensation.

作者信息

Brugnone Nathan, Gonopolskiy Alex, Moyle Mark W, Kuchroo Manik, van Dijk David, Moon Kevin R, Colon-Ramos Daniel, Wolf Guy, Hirn Matthew J, Krishnaswamy Smita

机构信息

Dept. of Comp. Math., Sci. & Eng., Michigan State University, East Lansing, MI, USA.

PicnicHealth, Berlin, Germany.

出版信息

Proc IEEE Int Conf Big Data. 2019 Dec;2019:2624-2633. doi: 10.1109/BigData47090.2019.9006013. Epub 2020 Feb 24.

Abstract

Big data often has emergent structure that exists at multiple levels of abstraction, which are useful for characterizing complex interactions and dynamics of the observations. Here, we consider multiple levels of abstraction via a multiresolution geometry of data points at different granularities. To construct this geometry we define a time-inhomogemeous diffusion process that effectively condenses data points together to uncover nested groupings at larger and larger granularities. This inhomogeneous process creates a deep cascade of intrinsic low pass filters on the data affinity graph that are applied in sequence to gradually eliminate local variability while adjusting the learned data geometry to increasingly coarser resolutions. We provide visualizations to exhibit our method as a "continuously-hierarchical" clustering with directions of eliminated variation highlighted at each step. The utility of our algorithm is demonstrated via neuronal data condensation, where the constructed multiresolution data geometry uncovers the organization, grouping, and connectivity between neurons.

摘要

大数据通常具有出现在多个抽象层次的涌现结构,这些结构有助于刻画观测值的复杂相互作用和动态变化。在此,我们通过不同粒度的数据点的多分辨率几何来考虑多个抽象层次。为了构建这种几何结构,我们定义了一个时间非齐次扩散过程,该过程有效地将数据点凝聚在一起,以揭示越来越大粒度下的嵌套分组。这种非齐次过程在数据亲和图上创建了一个深度级联的固有低通滤波器,这些滤波器按顺序应用,以逐步消除局部变异性,同时将学习到的数据几何调整到越来越粗糙的分辨率。我们提供可视化展示,将我们的方法呈现为一种“连续分层”聚类,在每个步骤中突出显示消除变化的方向。我们的算法的效用通过神经元数据凝聚得到了证明,其中构建的多分辨率数据几何揭示了神经元之间的组织、分组和连接性。

相似文献

1
Coarse Graining of Data via Inhomogeneous Diffusion Condensation.通过非均匀扩散凝聚对数据进行粗粒化
Proc IEEE Int Conf Big Data. 2019 Dec;2019:2624-2633. doi: 10.1109/BigData47090.2019.9006013. Epub 2020 Feb 24.
2
Emergent Spaces for Coupled Oscillators.耦合振荡器的涌现空间。
Front Comput Neurosci. 2020 May 12;14:36. doi: 10.3389/fncom.2020.00036. eCollection 2020.
4
Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials.低分辨率粗粒度自由能势的分层机器学习
J Chem Theory Comput. 2023 Jul 25;19(14):4436-4450. doi: 10.1021/acs.jctc.3c00128. Epub 2023 May 31.
7
Measuring data abstraction quality in multiresolution visualizations.衡量多分辨率可视化中的数据抽象质量。
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):709-16. doi: 10.1109/TVCG.2006.161.
8
Multiscale modeling of macromolecular biosystems.生物大分子体系的多尺度建模。
Brief Bioinform. 2012 Jul;13(4):395-405. doi: 10.1093/bib/bbr077. Epub 2012 Jan 6.
9
Multiresolution Consensus Clustering in Networks.网络中的多分辨率共识聚类
Sci Rep. 2018 Feb 19;8(1):3259. doi: 10.1038/s41598-018-21352-7.
10
Multi-View Diffusion Process for Spectral Clustering and Image Retrieval.用于谱聚类和图像检索的多视图扩散过程
IEEE Trans Image Process. 2023;32:4610-4620. doi: 10.1109/TIP.2023.3302517. Epub 2023 Aug 16.

引用本文的文献

3
Building and analyzing metacells in single-cell genomics data.在单细胞基因组学数据中构建和分析元细胞。
Mol Syst Biol. 2024 Jul;20(7):744-766. doi: 10.1038/s44320-024-00045-6. Epub 2024 May 29.

本文引用的文献

4
The technology and biology of single-cell RNA sequencing.单细胞 RNA 测序技术与生物学。
Mol Cell. 2015 May 21;58(4):610-20. doi: 10.1016/j.molcel.2015.04.005.
8
The structure of the nervous system of the nematode Caenorhabditis elegans.秀丽隐杆线虫的神经系统结构。
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
9
WormBook: the online review of Caenorhabditis elegans biology.《线虫手册》:秀丽隐杆线虫生物学在线评论
Nucleic Acids Res. 2007 Jan;35(Database issue):D472-5. doi: 10.1093/nar/gkl894. Epub 2006 Nov 11.
10
Integration of mechanosensory stimuli in Caenorhabditis elegans.秀丽隐杆线虫中机械感觉刺激的整合
J Neurosci. 1995 Mar;15(3 Pt 2):2434-44. doi: 10.1523/JNEUROSCI.15-03-02434.1995.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验