College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China.
Molecules. 2019 Jun 14;24(12):2227. doi: 10.3390/molecules24122227.
Seed vitality is one of the primary determinants of high yield that directly affects the performance of seedling emergence and plant growth. However, seed vitality may be lost during storage because of unfavorable conditions, such as high moisture content and temperatures. It is therefore vital for seed companies as well as farmers to test and determine seed vitality to avoid losses of any kind before sowing. In this study, near-infrared hyperspectral imaging (NIR-HSI) combined with multiple data preprocessing methods and classification models was applied to identify the vitality of rice seeds. A total of 2400 seeds of three different years: 2015, 2016 and 2017, were evaluated. The experimental results show that the NIR-HSI technique has great potential for identifying vitality and vigor of rice seeds. When detecting the seed vitality of the three different years, the extreme learning machine model with Savitzky-Golay preprocessing could achieve a high classification accuracy of 93.67% by spectral data from only eight wavebands (992, 1012, 1119, 1167, 1305, 1402, 1629 and 1649 nm), which could be developed for a fast and cost-effective seed-sorting system for industrial online application. When identifying non-viable seeds from viable seeds of different years, the least squares support vector machine model coupled with raw data and selected wavelengths of 968, 988, 1204, 1301, 1409, 1463, 1629, 1646 and 1659 nm achieved better classification performance (94.38% accuracy), and could be adopted as an optimal combination to identify non-viable seeds from viable seeds.
种子活力是获得高产的主要决定因素之一,它直接影响种子的出苗和植物生长性能。然而,由于高含水量和温度等不利条件,种子在储存过程中可能会失去活力。因此,种子公司和农民在播种前测试和确定种子活力对于避免任何损失至关重要。在这项研究中,近红外高光谱成像(NIR-HSI)结合多种数据预处理方法和分类模型被应用于识别水稻种子的活力。总共评估了三个不同年份(2015 年、2016 年和 2017 年)的 2400 粒种子。实验结果表明,NIR-HSI 技术在识别水稻种子活力和活力方面具有很大的潜力。在检测三个不同年份的种子活力时,使用 Savitzky-Golay 预处理的极限学习机模型通过仅八个波段(992、1012、1119、1167、1305、1402、1629 和 1649nm)的光谱数据,可实现 93.67%的高分类准确率,可开发用于工业在线应用的快速且具有成本效益的种子分拣系统。在从不同年份的有活力种子中识别无活力种子时,最小二乘支持向量机模型与原始数据和 968、988、1204、1301、1409、1463、1629、1646 和 1659nm 的选定波长相结合,可实现更好的分类性能(94.38%的准确率),并可作为从有活力种子中识别无活力种子的最佳组合。