Department of Comparative Biomedicine and Food Science, University of Padua - Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
Int J Biol Macromol. 2020 Dec 1;164:1715-1728. doi: 10.1016/j.ijbiomac.2020.07.295. Epub 2020 Aug 3.
The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed Fe sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.
蛋白质-纳米颗粒相互作用的知识对于预测纳米材料在生物环境中的命运至关重要。事实上,纳米材料表面的蛋白质冠是生物体生理反应的原因,影响着从运输到积累和毒性等细胞过程。在这里,通过使用四种不同的蛋白质进行比较,揭示了存在作为裸露氧化铁纳米颗粒识别位点的模式化羧酸基团区域。易于相互作用的蛋白质显示出独特的羧酸基团表面分布,使人联想到椭圆的几何形状。这在形态上与纳米颗粒的曲率互补,并与暴露在纳米材料表面上的铁位的形貌相匹配。不存在于非相互作用蛋白质中的识别位点促进了纳米颗粒的承载,并允许功能性蛋白质冠的形成。本工作设想了预测金属氧化物纳米颗粒表面蛋白质冠的组成和生物特性的可能性。
ACS Appl Mater Interfaces. 2021-2-24
Colloids Surf B Biointerfaces. 2017-4-1
Mol Pharm. 2020-3-2
Colloids Surf B Biointerfaces. 2016-4-1
Adv Exp Med Biol. 2018
Int J Mol Sci. 2022-5-16
Bioprocess Biosyst Eng. 2022-2
Int J Mol Sci. 2021-7-16