Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada.
Centre interdisciplinaire de modélisation mathématique, Université Laval, Québec, Canada.
PLoS Comput Biol. 2020 Feb 3;16(2):e1007584. doi: 10.1371/journal.pcbi.1007584. eCollection 2020 Feb.
Connectomes are spatially embedded networks whose architecture has been shaped by physical constraints and communication needs throughout evolution. Using a decentralized navigation protocol, we investigate the relationship between the structure of the connectomes of different species and their spatial layout. As a navigation strategy, we use greedy routing where nearest neighbors, in terms of geometric distance, are visited. We measure the fraction of successful greedy paths and their length as compared to shortest paths in the topology of connectomes. In Euclidean space, we find a striking difference between the navigability properties of mammalian and non-mammalian species, which implies the inability of Euclidean distances to fully explain the structural organization of their connectomes. In contrast, we find that hyperbolic space, the effective geometry of complex networks, provides almost perfectly navigable maps of connectomes for all species, meaning that hyperbolic distances are exceptionally congruent with the structure of connectomes. Hyperbolic maps therefore offer a quantitative meaningful representation of connectomes that suggests a new cartography of the brain based on the combination of its connectivity with its effective geometry rather than on its anatomy only. Hyperbolic maps also provide a universal framework to study decentralized communication processes in connectomes of different species and at different scales on an equal footing.
连接组是空间嵌入的网络,其结构在进化过程中受到物理约束和通信需求的影响。我们使用分散式导航协议来研究不同物种的连接组的结构与其空间布局之间的关系。作为一种导航策略,我们使用贪婪路由,根据几何距离访问最近的邻居。我们测量贪婪路径的成功比例及其长度与连接组拓扑中的最短路径相比。在欧几里得空间中,我们发现哺乳动物和非哺乳动物物种的可导航性特性之间存在显著差异,这意味着欧几里得距离无法完全解释它们的连接组的结构组织。相比之下,我们发现双曲空间是复杂网络的有效几何形状,为所有物种提供了几乎完全可导航的连接组地图,这意味着双曲距离与连接组的结构异常一致。因此,双曲地图为连接组提供了一种定量有意义的表示,它基于连接组的有效几何形状与其解剖结构的结合,而不是仅仅基于其解剖结构。双曲地图还为研究不同物种和不同尺度的连接组中的分散通信过程提供了一个通用框架,可以平等地进行研究。