Cabrera-Rufino Marco-Antonio, Ramos-Arreguín Juan-Manuel, Aceves-Fernandez Marco-Antonio, Gorrostieta-Hurtado Efren, Pedraza-Ortega Jesus-Carlos, Rodríguez-Resendiz Juvenal
Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Las Campanas, Queretaro 76010, Mexico.
Biomimetics (Basel). 2024 Oct 9;9(10):610. doi: 10.3390/biomimetics9100610.
The precision of robotic manipulators in the industrial or medical field is very important, especially when it comes to repetitive or exhaustive tasks. Geometric deformations are the most common in this field. For this reason, new robotic vision techniques have been proposed, including 3D methods that made it possible to determine the geometric distances between the parts of a robotic manipulator. The aim of this work is to measure the angular position of a robotic arm with six degrees of freedom. For this purpose, a stereo camera and a convolutional neural network algorithm are used to reduce the degradation of precision caused by geometric errors. This method is not intended to replace encoders, but to enhance accuracy by compensating for degradation through an intelligent visual measurement system. The camera is tested and the accuracy is about one millimeter. The implementation of this method leads to better results than traditional and simple neural network methods.
工业或医疗领域中机器人操纵器的精度非常重要,尤其是在涉及重复性或详尽性任务时。几何变形在该领域最为常见。因此,人们提出了新的机器人视觉技术,包括三维方法,这些方法使得确定机器人操纵器各部分之间的几何距离成为可能。这项工作的目的是测量具有六个自由度的机器人手臂的角位置。为此,使用立体相机和卷积神经网络算法来减少由几何误差导致的精度下降。该方法并非旨在取代编码器,而是通过智能视觉测量系统补偿精度下降来提高准确性。对相机进行了测试,精度约为一毫米。与传统的简单神经网络方法相比,该方法的实施产生了更好的结果。