Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
Makino Herbarium, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
Sci Rep. 2020 Aug 6;10(1):13224. doi: 10.1038/s41598-020-70166-z.
Many macrofungal cryptic species remain unidentified. A possible solution is to increase the number of loci analyzed and use rigorous statistics for macrofungal species delimitation. To validate this assumption, cryptic species of the Hypholoma fasciculare complex, a group of common wood-decomposing fungi, were attempted to be delineated. Massively parallel sequencing of mitochondrial ribosomal RNA (mt_rRNA), nuclear ribosomal internal transcribed spacer (ITS) region, and 24 single-copy genes were performed for 96 specimens collected in Japan. Then, the species boundaries were inferred using comparative gene genealogies (mt_rRNA vs. ITS), Bayesian Poisson tree process (bPTP) model for the phylogeny of concatenated nuclear sequences, and analysis of molecular variance (AMOVA) for single nucleotide polymorphisms. In both the mt_rRNA and ITS phylogenies, the H. fasciculare complex was not divided into well-supported clades. Nevertheless, based on the bPTP, two mitochondrial haplotypes were inferred to represent distinct species (H. fasciculare and H. subviride). The results of AMOVA also indicated that the differentiation of nuclear loci can be explained mostly by differences between haplotype. These results suggest that it is necessary to increase the number of target loci to 20 or more and use both phylogeny-based and population genetics-based statistics for the accurate delimitation of macrofungal species.
许多大型真菌隐种仍未被鉴定。一种可能的解决方案是增加分析的基因座数量,并使用严格的统计学方法来进行大型真菌物种的划分。为了验证这一假设,尝试对常见的木材分解真菌 Hypoloma fasciculare 复合体的隐种进行划分。对在日本采集的 96 个样本进行了线粒体核糖体 RNA(mt_rRNA)、核核糖体内部转录间隔区(ITS)区域和 24 个单拷贝基因的大规模平行测序。然后,使用比较基因系统发育(mt_rRNA 与 ITS)、联合核序列的贝叶斯泊松树过程(bPTP)模型以及单核苷酸多态性的分析分子方差(AMOVA)来推断物种边界。在 mt_rRNA 和 ITS 系统发育中,Hypoloma fasciculare 复合体并未分为具有良好支持的分支。然而,基于 bPTP,推断出两种线粒体单倍型代表不同的物种(Hypoloma fasciculare 和 Hypoloma subviride)。AMOVA 的结果也表明,核基因座的分化主要可以用单倍型之间的差异来解释。这些结果表明,有必要将目标基因座的数量增加到 20 个或更多,并使用基于系统发育和基于群体遗传学的统计学方法来准确划分大型真菌物种。