Suppr超能文献

用于精准农业机器人对作物和杂草进行精细检测的实例分割。

Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots.

作者信息

Champ Julien, Mora-Fallas Adan, Goëau Hervé, Mata-Montero Erick, Bonnet Pierre, Joly Alexis

机构信息

Institut national de recherche en informatique et en automatique (INRIA) Sophia-Antipolis, ZENITH team Laboratory of Informatics Robotics and Microelectronics-Joint Research Unit 34095 Montpellier CEDEX 5 France.

School of Computing Costa Rica Institute of Technology Cartago Costa Rica.

出版信息

Appl Plant Sci. 2020 Jul 28;8(7):e11373. doi: 10.1002/aps3.11373. eCollection 2020 Jul.

Abstract

PREMISE

Weed removal in agriculture is typically achieved using herbicides. The use of autonomous robots to reduce weeds is a promising alternative solution, although their implementation requires the precise detection and identification of crops and weeds to allow an efficient action.

METHODS

We trained and evaluated an instance segmentation convolutional neural network aimed at segmenting and identifying each plant specimen visible in images produced by agricultural robots. The resulting data set comprised field images on which the outlines of 2489 specimens from two crop species and four weed species were manually drawn. We adjusted the hyperparameters of a mask region-based convolutional neural network (R-CNN) to this specific task and evaluated the resulting trained model.

RESULTS

The probability of detection using the model was quite good but varied significantly depending on the species and size of the plants. In practice, between 10% and 60% of weeds could be removed without too high of a risk of confusion with crop plants. Furthermore, we show that the segmentation of each plant enabled the determination of precise action points such as the barycenter of the plant surface.

DISCUSSION

Instance segmentation opens many possibilities for optimized weed removal actions. Weed electrification, for instance, could benefit from the targeted adjustment of the voltage, frequency, and location of the electrode to the plant. The results of this work will enable the evaluation of this type of weeding approach in the coming months.

摘要

前提

农业中的杂草清除通常使用除草剂来实现。使用自主机器人来减少杂草是一种很有前景的替代解决方案,尽管其实施需要精确检测和识别作物与杂草,以便采取有效的行动。

方法

我们训练并评估了一个实例分割卷积神经网络,旨在分割和识别农业机器人所拍摄图像中可见的每个植物样本。所得数据集包含田间图像,在这些图像上手动绘制了来自两种作物物种和四种杂草物种的2489个样本的轮廓。我们针对此特定任务调整了基于掩码区域的卷积神经网络(R-CNN)的超参数,并评估了所得的训练模型。

结果

使用该模型进行检测的概率相当不错,但会因植物的物种和大小而有很大差异。在实际操作中,10%至60%的杂草可以被清除,而与作物混淆的风险不会过高。此外,我们表明对每株植物的分割能够确定精确的作用点,例如植物表面的重心。

讨论

实例分割为优化杂草清除行动开辟了许多可能性。例如,杂草电气化可以受益于针对植物对电压、频率和电极位置进行的有针对性调整。这项工作的结果将使我们能够在未来几个月对这种除草方法进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8765/7394709/bcacd7343108/APS3-8-e11373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验