Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
Nat Commun. 2020 Aug 7;11(1):3942. doi: 10.1038/s41467-020-17405-z.
Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.
虽然散发性阿尔茨海默病(AD)已经被发现超过 100 年,但它的分子基础仍然难以捉摸。为了更好地描述 AD 的复杂性质,我们在一个大型的人类 AD 多组学数据集上构建了多尺度因果网络,整合了 AD 的临床特征、DNA 变异、基因和蛋白质表达。这些概率因果模型能够检测、优先化和复制与 AD 相关网络的高可信度主调控因子,包括预测的顶级调控因子 VGF。在 5xFAD 小鼠中过表达神经肽前体 VGF 部分挽救了β淀粉样蛋白介导的记忆障碍和神经病理学。在这个 AD 模型中,还对 VGF 下游网络预测进行了分子验证,在过表达 VGF 的 5xFAD 脑中差异表达的同源基因中显著富集。我们的研究结果支持 VGF 在预防 AD 发病机制和进展中的因果作用。