Sun Jun, Aikawa Masanori, Ashktorab Hassan, Beckmann Noam D, Enger Michael L, Espinosa Joaquin M, Gai Xiaowu, Horne Benjamin D, Keim Paul, Lasky-Su Jessica, Letts Rebecca, Maier Cheryl L, Mandal Meisha, Nichols Lauren, Roan Nadia R, Russell Mark W, Rutter Jacqueline, Saade George R, Sharma Kumar, Shiau Stephanie, Thibodeau Stephen N, Yang Samuel, Miele Lucio
Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, IL, United States.
Cardiovascular Division and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
Front Syst Biol. 2025 Jan 7;4:1422384. doi: 10.3389/fsysb.2024.1422384. eCollection 2024.
Post-Acute Sequelae of SARS-CoV-2 infection (PASC or "Long COVID"), includes numerous chronic conditions associated with widespread morbidity and rising healthcare costs. PASC has highly variable clinical presentations, and likely includes multiple molecular subtypes, but it remains poorly understood from a molecular and mechanistic standpoint. This hampers the development of rationally targeted therapeutic strategies. The NIH-sponsored "Researching COVID to Enhance Recovery" (RECOVER) initiative includes several retrospective/prospective observational cohort studies enrolling adult, pregnant adult and pediatric patients respectively. RECOVER formed an "OMICS" multidisciplinary task force, including clinicians, pathologists, laboratory scientists and data scientists, charged with developing recommendations to apply cutting-edge system biology technologies to achieve the goals of RECOVER. The task force met biweekly over 14 months, to evaluate published evidence, examine the possible contribution of each "omics" technique to the study of PASC and develop study design recommendations. The OMICS task force recommended an integrated, longitudinal, simultaneous systems biology study of participant biospecimens on the entire RECOVER cohorts through centralized laboratories, as opposed to multiple smaller studies using one or few analytical techniques. The resulting multi-dimensional molecular dataset should be correlated with the deep clinical phenotyping performed through RECOVER, as well as with information on demographics, comorbidities, social determinants of health, the exposome and lifestyle factors that may contribute to the clinical presentations of PASC. This approach will minimize lab-to-lab technical variability, maximize sample size for class discovery, and enable the incorporation of as many relevant variables as possible into statistical models. Many of our recommendations have already been considered by the NIH through the peer-review process, resulting in the creation of a systems biology panel that is currently designing the studies we proposed. This system biology strategy, coupled with modern data science approaches, will dramatically improve our prospects for accurate disease subtype identification, biomarker discovery and therapeutic target identification for precision treatment. The resulting dataset should be made available to the scientific community for secondary analyses. Analogous system biology approaches should be built into the study designs of large observational studies whenever possible.
新型冠状病毒感染的急性后遗症(PASC或“长新冠”)包括众多与广泛发病和不断上升的医疗成本相关的慢性病。PASC的临床表现高度可变,可能包括多种分子亚型,但从分子和机制角度来看,人们对其仍知之甚少。这阻碍了合理靶向治疗策略的开发。美国国立卫生研究院资助的“研究新冠以促进康复”(RECOVER)倡议包括多项回顾性/前瞻性观察队列研究,分别纳入成年、成年孕妇和儿科患者。RECOVER组建了一个“组学”多学科特别工作组,成员包括临床医生、病理学家、实验室科学家和数据科学家,其职责是制定建议,应用前沿系统生物学技术来实现RECOVER的目标。该特别工作组在14个月内每两周开会一次,以评估已发表的证据,研究每种“组学”技术对PASC研究的可能贡献,并制定研究设计建议。“组学”特别工作组建议通过中央实验室对整个RECOVER队列的参与者生物样本进行综合、纵向、同步的系统生物学研究,而不是使用一种或几种分析技术进行多个较小的研究。由此产生的多维分子数据集应与通过RECOVER进行的深度临床表型分析相关联,同时也应与人口统计学、合并症、健康的社会决定因素、暴露组以及可能导致PASC临床表现的生活方式因素等信息相关联。这种方法将最大限度地减少实验室间的技术差异,最大化用于类别发现的样本量,并使尽可能多的相关变量纳入统计模型。美国国立卫生研究院已通过同行评审过程考虑了我们的许多建议,从而创建了一个系统生物学小组,该小组目前正在设计我们提议的研究。这种系统生物学策略,再加上现代数据科学方法,将极大地改善我们准确识别疾病亚型、发现生物标志物和确定治疗靶点以进行精准治疗的前景。最终的数据集应提供给科学界进行二次分析。只要有可能,类似的系统生物学方法应纳入大型观察性研究的设计中。