Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India.
Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India.
Physiol Plant. 2021 Apr;171(4):578-594. doi: 10.1111/ppl.13185. Epub 2020 Aug 31.
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na /H exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
土壤盐度是植物面临的主要环境胁迫之一。氯化钠是最重要的盐类,通过破坏渗透压导致盐胁迫。由于各种内在机制,植物适应周围的碱性环境。在盐胁迫下,调节离子转运和排除的基因和转录因子(如盐过度敏感(SOS)、Na+/H 交换器(NHXs)、高钠亲和力转运体(HKT)和质膜蛋白(PMP)被激活,有助于减轻细胞的离子毒性。对于植物的耐盐性,信号转导和基因表达通过转录因子如 NAM(无顶端分生组织)、ATAF(拟南芥转录激活因子)、CUC(杯状子叶)、AP2/乙烯响应因子(AP2/ERF)、W 框结合因子(WRKY)和碱性亮氨酸拉链结构域(bZIP)进行调节。所有这些转录因子和基因之间的相互作用有助于植物形成耐受盐胁迫的机制。这些基因和转录因子通过打开各种膜离子通道来调节离子从细胞内的流出。与野生型相比,所有这些基因的突变体或敲除体的耐盐性都较低。利用基因组、转录组、离子组和代谢组等新型分子技术对植物进行分析,可以帮助我们深入了解植物的耐盐机制。在这篇综述中,我们讨论了在盐胁迫下通过离子平衡的转运动力学赋予植物耐盐性的基因,并需要整合高通量分子生物学技术来阐明这个问题。