LighTopTech Corp., West Henrietta, New York, United States.
The Eye Care Center, Canandaigua, New York, United States.
J Biomed Opt. 2020 Aug;25(9):1-17. doi: 10.1117/1.JBO.25.9.092902.
An accurate, automated, and unbiased cell counting procedure is needed for tissue selection for corneal transplantation.
To improve accuracy and reduce bias in endothelial cell density (ECD) quantification by combining Gabor-domain optical coherence microscopy (GDOCM) for three-dimensional, wide field-of-view (1 mm2) corneal imaging and machine learning for automatic delineation of endothelial cell boundaries.
Human corneas stored in viewing chambers were imaged over a wide field-of-view with GDOCM without contacting the specimens. Numerical methods were applied to compensate for the natural curvature of the cornea and produce an image of the flattened endothelium. A convolutional neural network (CNN) was trained to automatically delineate the cell boundaries using 180 manually annotated images from six corneas. Ten additional corneas were imaged with GDOCM and compared with specular microscopy (SM) to determine performance of the combined GDOCM and CNN to achieve automated endothelial counts relative to current procedural standards.
Cells could be imaged over a larger area with GDOCM than SM, and more cells could be delineated via automatic cell segmentation than via manual methods. ECD obtained from automatic cell segmentation of GDOCM images yielded a correlation of 0.94 (p < 0.001) with the manual segmentation on the same images, and correlation of 0.91 (p < 0.001) with the corresponding manually counted SM results.
Automated endothelial cell counting on GDOCM images with large field of view eliminates selection bias and reduces sampling error, which both affect the gold standard of manual counting on SM images.
需要一种准确、自动化且无偏倚的细胞计数程序,以便为角膜移植选择组织。
通过结合用于三维、宽视场 (1 mm2) 角膜成像的 Gabor 域光学相干显微镜 (GDOCM) 和用于自动描绘内皮细胞边界的机器学习,提高内皮细胞密度 (ECD) 定量的准确性并减少偏倚。
将储存在观察室中的人眼角膜用 GDOCM 进行宽视场成像,而无需接触标本。应用数值方法来补偿角膜的自然曲率,并产生平坦化内皮的图像。使用来自六个角膜的 180 张手动标注图像训练卷积神经网络 (CNN) 以自动描绘细胞边界。对另外 10 个角膜进行 GDOCM 成像,并与共焦显微镜 (SM) 进行比较,以确定组合使用 GDOCM 和 CNN 进行自动内皮计数相对于当前程序标准的性能。
与 SM 相比,GDOCM 可以在更大的区域内成像细胞,并且通过自动细胞分割可以比手动方法更准确地描绘更多的细胞。从 GDOCM 图像的自动细胞分割获得的 ECD 与同一图像上的手动分割具有 0.94(p < 0.001)的相关性,与相应的手动计数 SM 结果具有 0.91(p < 0.001)的相关性。
使用大视场 GDOCM 图像进行自动内皮细胞计数消除了选择偏差和采样误差,这两者都会影响 SM 图像上手动计数的金标准。