Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA.
Bull Math Biol. 2020 Aug 9;82(8):111. doi: 10.1007/s11538-020-00788-x.
We study the basic reproduction numbers for a class of reaction-diffusion epidemic models that are developed from autonomous ODE systems. We present a general numerical framework to compute such basic reproduction numbers; meanwhile, the numerical formulation provides useful insight into their characterizations. Using matrix analysis, we show that the basic reproduction numbers are the same for these PDE models and their associated ODE models in several important cases that include, among others, a single infected compartment, constant diffusion rates, uniform diffusion patterns among the infected compartments, and partial diffusion in the system.
我们研究了一类从自治 ODE 系统发展而来的反应扩散传染病模型的基本繁殖数。我们提出了一种通用的数值框架来计算这种基本繁殖数;同时,数值公式为它们的特征提供了有用的见解。利用矩阵分析,我们证明了在几个重要的情况下,这些 PDE 模型及其相关的 ODE 模型的基本繁殖数是相同的,这些情况包括,除其他外,一个单一的感染舱、常数扩散率、感染舱之间均匀的扩散模式以及系统中的部分扩散。