Suppr超能文献

用于对X连锁青少年视网膜劈裂症患者光学相干断层扫描图像中的劈裂腔进行分割的具有自动数据增强功能的深度学习

Deep Learning with Automatic Data Augmentation for Segmenting Schisis Cavities in the Optical Coherence Tomography Images of X-Linked Juvenile Retinoschisis Patients.

作者信息

Wei Xing, Li Hui, Zhu Tian, Li Wuyi, Li Yamei, Sui Ruifang

机构信息

Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1, Shuai Fu Yuan, Beijing 100730, China.

出版信息

Diagnostics (Basel). 2023 Sep 24;13(19):3035. doi: 10.3390/diagnostics13193035.

Abstract

X-linked juvenile retinoschisis (XLRS) is an inherited disorder characterized by retinal schisis cavities, which can be observed in optical coherence tomography (OCT) images. Monitoring disease progression necessitates the accurate segmentation and quantification of these cavities; yet, current manual methods are time consuming and result in subjective interpretations, highlighting the need for automated and precise solutions. We employed five state-of-the-art deep learning models-U-Net, U-Net++, Attention U-Net, Residual U-Net, and TransUNet-for the task, leveraging a dataset of 1500 OCT images from 30 patients. To enhance the models' performance, we utilized data augmentation strategies that were optimized via deep reinforcement learning. The deep learning models achieved a human-equivalent accuracy level in the segmentation of schisis cavities, with U-Net++ surpassing others by attaining an accuracy of 0.9927 and a Dice coefficient of 0.8568. By utilizing reinforcement-learning-based automatic data augmentation, deep learning segmentation models demonstrate a robust and precise method for the automated segmentation of schisis cavities in OCT images. These findings are a promising step toward enhancing clinical evaluation and treatment planning for XLRS.

摘要

X连锁青少年视网膜劈裂症(XLRS)是一种遗传性疾病,其特征是视网膜劈裂腔,可在光学相干断层扫描(OCT)图像中观察到。监测疾病进展需要对这些腔进行准确的分割和量化;然而,目前的手动方法耗时且导致主观解释,凸显了对自动化和精确解决方案的需求。我们使用了五种先进的深度学习模型——U-Net、U-Net++、注意力U-Net、残差U-Net和TransUNet——来完成这项任务,利用了来自30名患者的1500张OCT图像数据集。为了提高模型的性能,我们采用了通过深度强化学习优化的数据增强策略。深度学习模型在劈裂腔分割方面达到了与人类相当的准确率水平,其中U-Net++表现最佳,准确率达到0.9927,Dice系数达到0.8568。通过基于强化学习的自动数据增强,深度学习分割模型展示了一种用于OCT图像中劈裂腔自动分割的强大而精确的方法。这些发现朝着加强XLRS的临床评估和治疗规划迈出了有希望的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d448/10572414/771cbb0494c9/diagnostics-13-03035-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验