Suppr超能文献

一种基于深度信念网络的多模态人体运动意图预测框架。

A multimodal framework based on deep belief network for human locomotion intent prediction.

作者信息

Li Jiayi, Zhang Jianhua, Li Kexiang, Cao Jian, Li Hui

机构信息

School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401 China.

School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083 China.

出版信息

Biomed Eng Lett. 2024 Feb 9;14(3):559-569. doi: 10.1007/s13534-024-00351-w. eCollection 2024 May.

Abstract

Accurate prediction of human locomotion intent benefits the seamless switching of lower limb exoskeleton controllers in different terrains to assist humans in walking safely. In this paper, a deep belief network (DBN) was developed to construct a multimodal framework for recognizing various locomotion modes and predicting transition tasks. Three fusion strategies (data level, feature level, and decision level) were explored, and optimal network performance was obtained. This method could be tested on public datasets. For the continuous performance of steady state, the best prediction accuracy achieved was 97.64% in user-dependent testing and 96.80% in user-independent testing. During the transition state, the system accurately predicted all transitions (user-dependent: 96.37%, user-independent: 95.01%). The multimodal framework based on DBN can accurately predict the human locomotion intent. The experimental results demonstrate the potential of the proposed model in the volition control of the lower limb exoskeleton.

摘要

准确预测人类运动意图有助于下肢外骨骼控制器在不同地形中无缝切换,以协助人类安全行走。本文开发了一种深度信念网络(DBN),构建了一个多模态框架来识别各种运动模式并预测过渡任务。探索了三种融合策略(数据级、特征级和决策级),并获得了最佳网络性能。该方法可在公共数据集上进行测试。对于稳态的连续性能,在用户依赖测试中实现的最佳预测准确率为97.64%,在用户独立测试中为96.80%。在过渡状态期间,系统准确预测了所有过渡(用户依赖:96.37%,用户独立:95.01%)。基于DBN的多模态框架可以准确预测人类运动意图。实验结果证明了所提模型在下肢外骨骼意志控制方面的潜力。

相似文献

2
Fusion of Human Gaze and Machine Vision for Predicting Intended Locomotion Mode.人类注视与机器视觉融合预测意向运动模式。
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1103-1112. doi: 10.1109/TNSRE.2022.3168796. Epub 2022 May 3.
4
Predicting Continuous Locomotion Modes via Multidimensional Feature Learning From sEMG.基于表面肌电的多维特征学习预测连续运动模式。
IEEE J Biomed Health Inform. 2024 Nov;28(11):6629-6640. doi: 10.1109/JBHI.2024.3441600. Epub 2024 Nov 6.

本文引用的文献

2
Real-Time Hierarchical Classification of Time Series Data for Locomotion Mode Detection.用于运动模式检测的时间序列数据的实时分层分类
IEEE J Biomed Health Inform. 2022 Apr;26(4):1749-1760. doi: 10.1109/JBHI.2021.3106110. Epub 2022 Apr 14.
6
Predicting Human Intention-Behavior Through EEG Signal Analysis Using Multi-Scale CNN.通过使用多尺度 CNN 分析 EEG 信号预测人类意图-行为。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1722-1729. doi: 10.1109/TCBB.2020.3039834. Epub 2021 Oct 7.
9
Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton.下肢外骨骼的简化自适应模糊解耦控制
IEEE Trans Cybern. 2021 Mar;51(3):1099-1109. doi: 10.1109/TCYB.2020.2972582. Epub 2021 Feb 17.
10
Unsupervised Cross-Subject Adaptation for Predicting Human Locomotion Intent.无监督跨主体适应预测人类运动意图。
IEEE Trans Neural Syst Rehabil Eng. 2020 Mar;28(3):646-657. doi: 10.1109/TNSRE.2020.2966749. Epub 2020 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验