Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland.
Nencki Institute of Experimental Biology, Pasteura 3, Warsaw, 02-093, Poland.
J Phys Chem Lett. 2020 Aug 20;11(16):6914-6920. doi: 10.1021/acs.jpclett.0c01748. Epub 2020 Aug 11.
Metabolic reactions in living cells are limited by diffusion of reagents in the cytoplasm. Any attempt to quantify the kinetics of biochemical reactions in the cytosol should be preceded by careful measurements of the physical properties of the cellular interior. The cytoplasm is a complex, crowded fluid characterized by effective viscosity dependent on its structure at a nanoscopic length scale. In this work, we present and validate the model describing the cytoplasmic nanoviscosity, based on measurements in seven human cell lines, for nanoprobes ranging in diameters from 1 to 150 nm. Irrespective of cell line origin (epithelial-mesenchymal, cancerous-noncancerous, male-female, young-adult), we obtained a similar dependence of the viscosity on the size of the nanoprobes, with characteristic length-scales of 20 ± 11 nm (hydrodynamic radii of major crowders in the cytoplasm) and 4.6 ± 0.7 nm (radii of intercrowder gaps). Moreover, we revealed that the cytoplasm behaves as a liquid for length scales smaller than 100 nm and as a physical gel for larger length scales.
活细胞中的代谢反应受到细胞质中试剂扩散的限制。任何试图量化细胞质中生化反应动力学的尝试都应该先仔细测量细胞内部的物理性质。细胞质是一种复杂的、拥挤的流体,其有效粘度取决于其在纳米尺度上的结构。在这项工作中,我们提出并验证了一个描述细胞质纳米粘度的模型,该模型基于对 7 个人类细胞系中直径在 1 至 150nm 之间的纳米探针的测量结果。无论细胞系的起源(上皮-间充质、癌性-非癌性、男性-女性、年轻-成年)如何,我们都得到了一个类似的粘度与纳米探针大小的依赖关系,其特征长度尺度分别为 20 ± 11nm(细胞质中主要拥挤物的流体力学半径)和 4.6 ± 0.7nm(拥挤物间隙半径)。此外,我们揭示了细胞质在小于 100nm 的尺度下表现为液体,在大于 100nm 的尺度下表现为物理凝胶。