Suppr超能文献

新型冠状病毒肺炎患者与其他肺部感染患者生物标志物的差异

Difference in Biomarkers Between COVID-19 Patients and Other Pulmonary Infection Patients.

作者信息

Dai Jingyi, Du Yingrong, Gao Jianpeng, Zhao Jun, Wang Lin, Huang Ying, Xia Jiawei, Luo Yu, Li Shenghao, McNeil Edward B

机构信息

Department of Infectious Diseases, Kunming Third People's Hospital, Kunming, Yunnan, People's Republic of China.

School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.

出版信息

Infect Drug Resist. 2020 Jul 28;13:2609-2615. doi: 10.2147/IDR.S257936. eCollection 2020.

Abstract

BACKGROUND

The pandemic due to the novel coronavirus disease 2019 (COVID-19) has resulted in an increasing number of patients need to be tested. We aimed to determine if the use of integrated laboratory data can discriminate COVID-19 patients from other pulmonary infection patients.

METHODS

This retrospective cohort study was conducted at Kunming Third People's Hospital in China from January 20 to February 28, 2020. Medical records and laboratory data were extracted and combined for COVID-19 and other pulmonary infection patients on admission. A partial least square discriminant analysis (PLS-DA) model was constructed and calibrated to discriminate COVID-19 from other pulmonary infection patients.

RESULTS

COVID-19 patients diagnosed and treated in Kunming were balanced in terms of sex and covered all age groups. Most of them were mild cases; only five were severe cases. The first two dimensions of the PLS-DA model could classify COVID-19 and other pulmonary infection patients with an accuracy of 96.6% (95.1% in the cross-validation model). Basophil count, the proportion of basophils, prothrombin time, prothrombin time activity, and international normalized ratio were the five most discriminant biomarkers.

CONCLUSION

Integration of biomarkers can discriminate COVID-19 patients from other pulmonary infections on admission to hospital and thus may be a supplement to nucleic acid tests.

摘要

背景

2019年新型冠状病毒病(COVID-19)大流行导致需要检测的患者数量不断增加。我们旨在确定综合实验室数据是否能够将COVID-19患者与其他肺部感染患者区分开来。

方法

这项回顾性队列研究于2020年1月20日至2月28日在中国昆明市第三人民医院进行。提取并合并了COVID-19患者和其他肺部感染患者入院时的病历及实验室数据。构建并校准了偏最小二乘判别分析(PLS-DA)模型,以区分COVID-19患者和其他肺部感染患者。

结果

在昆明诊断和治疗的COVID-19患者在性别方面较为均衡,涵盖了所有年龄组。其中大多数为轻症病例;仅有5例为重症病例。PLS-DA模型的前两个维度能够对COVID-19患者和其他肺部感染患者进行分类,准确率为96.6%(交叉验证模型中为95.1%)。嗜碱性粒细胞计数、嗜碱性粒细胞比例、凝血酶原时间、凝血酶原时间活动度和国际标准化比值是五个最具判别力的生物标志物。

结论

生物标志物的整合能够在患者入院时将COVID-19患者与其他肺部感染患者区分开来,因此可能作为核酸检测的一种补充手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f981/7397211/abaf36a0020a/IDR-13-2609-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验