BAK1 对 ATG18a 的磷酸化抑制自噬,从而减弱植物对坏死型病原菌的抗性。
Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens.
机构信息
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
Ecology College, Lishui University, Lishui, China.
出版信息
Autophagy. 2021 Sep;17(9):2093-2110. doi: 10.1080/15548627.2020.1810426. Epub 2020 Aug 26.
Autophagy is critical for plant defense against necrotrophic pathogens, which causes serious yield loss on crops. However, the post-translational regulatory mechanisms of autophagy pathway in plant resistance against necrotrophs remain poorly understood. In this study, we report that phosphorylation modification on ATG18a, a key regulator of autophagosome formation in , constitutes a post-translation regulation of autophagy, which attenuates plant resistance against necrotrophic pathogens. We found that phosphorylation of ATG18a suppresses autophagosome formation and its subsequent delivery into the vacuole, which results in reduced autophagy activity and compromised plant resistance against . In contrast, overexpression of ATG18a dephosphorylation-mimic form increases the accumulation of autophagosomes and complements the plant resistance of mutant against . Moreover, BAK1, a key regulator in plant resistance, was identified to physically interact with and phosphorylate ATG18a. Mutation of blocks ATG18a phosphorylation at four of the five detected phosphorylation sites after infection and strongly activates autophagy, leading to enhanced resistance against . Collectively, the identification of functional phosphorylation sites on ATG18a and the corresponding kinase BAK1 unveiled how plant regulates autophagy during resistance against necrotrophic pathogens.: the cauliflower mosaic virus promoter; ; ABA: abscisic acid; ATG: autophagy-related; ATG18a: autophagy-related protein 18a in ; ATG8a: autophagy-related protein 8a in ; ATG8-PE: ATG8 conjugated with PE; ; BAK1: Brassinosteroid insensitive 1-associated receptor kinase1 in ; BiFC: biomolecular fluorescence complementation; BIK1: Botrytis-insensitive kinase 1 in ; BKK1: BAK1-like 1 in ; BR: brassinosteroid; Co-IP: coimmunoprecipitation; dai: days after inoculation; DAMPs: damage-associated molecular patterns; ; ER: endoplasmic reticulum; ETI: effector-triggered immunity; GFP: green fluorescent protein; HA: hemagglutinin; IP: immunoprecipitation; LC-MS/MS: liquid chromatography-tandem mass spectrometry; LCI: luciferase complementation imaging; MPK3: mitogen-activated protein kinase 3 in ; MPK4: mitogen-activated protein kinase 4 in ; MPK6: mitogen-activated protein kinase 6 in ; NES: nuclear export sequence; PAMP: pathogen-associated molecular pattern; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PRR: pattern recognition receptor; PtdIns(3,5)P phosphatidylinositol (3,5)-biphosphate; PtdIns3P: phosphatidylinositol 3-biphosphate; PTI: PAMP-triggered immunity; qRT-PCR: quantitative reverse transcription PCR; SnRK2.6: SNF1-related protein kinase 2.6 in ; TORC1: the rapamycin-sensitive Tor complex1; TRAF: tumor necrosis factor receptor-associated factor; WT: wild type plant; Yc: C-terminal fragment of YFP; YFP: yellow fluorescent protein; Yn: N-terminal fragment of YFP.
自噬对于植物抵御坏死型病原体至关重要,因为坏死型病原体可导致农作物严重减产。然而,植物抵御坏死型病原体过程中自噬途径的翻译后调控机制仍知之甚少。在本研究中,我们报道了在 中,自噬小体形成的关键调控因子 ATG18a 的磷酸化修饰构成了自噬的翻译后调控,从而削弱了植物对坏死型病原体的抗性。我们发现,ATG18a 的磷酸化抑制了自噬小体的形成及其随后向液泡中的运输,从而导致自噬活性降低,并损害了植物对坏死型病原体的抗性。相比之下,过表达去磷酸化模拟形式的 ATG18a 会增加自噬小体的积累,并补充 突变体对 的植物抗性。此外,BAK1,植物抗性中的一个关键调控因子,被鉴定为与 ATG18a 物理相互作用并磷酸化 ATG18a。在 感染后,突变体中五个检测到的磷酸化位点中的四个位点的 ATG18a 磷酸化被阻断,并强烈激活自噬,导致对 的抗性增强。总的来说,鉴定 ATG18a 的功能磷酸化位点和相应的激酶 BAK1,揭示了植物如何在抵御坏死型病原体的过程中调节自噬。