Suppr超能文献

婴儿大脑发育评分:足月和早产儿弥散磁共振成像特征。

Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants.

机构信息

Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Brain Struct Funct. 2020 Nov;225(8):2431-2445. doi: 10.1007/s00429-020-02132-4. Epub 2020 Aug 17.

Abstract

Large-scale longitudinal neuroimaging studies of the infant brain allow us to map the spatiotemporal development of the brain in its early phase. While the postmenstrual age (PMA) is commonly used as a time index to analyze longitudinal MRI data, the nonlinear relationship between PMA and MRI data imposes challenges for downstream analyses. We propose a mathematical model that provides a Developmental Score (DevS) as a data-driven time index to characterize the brain development based on MRI features. 319 diffusion tensor imaging (DTI) datasets were collected from 87 term-born and 66 preterm-born infants at multiple visits, which were automatically segmented based on the JHU neonatal atlas. The mean diffusivity (MD) and fractional anisotropy (FA) in 126 brain parcels were used in the model to derive DevS. We demonstrate that transforming the time index from PMA to DevS improves the linearity of the longitudinal changes in MD and FA in both gray and white matter structures. More importantly, regional developmental differences in DTI metrics between preterm- and term-born infants were identified more clearly using DevS, e.g. 79 structures showed significantly different regression patterns in MD between preterm- and term-born infants, compared to only 27 structures that showed group differences using PMA as the index. Therefore, the DevS model facilitates linear analyses of DTI metrics in the infant brain, and provides a useful tool to characterize altered brain development due to preterm-birth.

摘要

大规模的婴儿期大脑纵向神经影像学研究使我们能够绘制大脑早期的时空发育图谱。虽然胎龄(PMA)通常被用作分析纵向 MRI 数据的时间指标,但 PMA 与 MRI 数据之间的非线性关系给下游分析带来了挑战。我们提出了一种数学模型,该模型提供了发育评分(DevS)作为一个数据驱动的时间指标,基于 MRI 特征来描述大脑发育。从 87 名足月出生和 66 名早产儿中收集了 319 个扩散张量成像(DTI)数据集,这些数据集在多次访问中基于 JHU 新生儿图谱进行了自动分割。模型中使用了 126 个脑区的平均扩散系数(MD)和各向异性分数(FA)来推导 DevS。我们证明,将时间指标从 PMA 转换为 DevS 可以改善 MD 和 FA 在灰质和白质结构中的纵向变化的线性度。更重要的是,使用 DevS 可以更清楚地识别早产儿和足月儿之间 DTI 指标的区域发育差异,例如,与仅使用 PMA 作为指标显示组间差异的 27 个结构相比,79 个结构在 MD 上显示出早产儿和足月儿之间明显不同的回归模式。因此,DevS 模型促进了婴儿大脑 DTI 指标的线性分析,并提供了一种有用的工具来描述由于早产而导致的大脑发育改变。

相似文献

引用本文的文献

本文引用的文献

7
Human Connectomics across the Life Span.人类全生命周期连接组学
Trends Cogn Sci. 2017 Jan;21(1):32-45. doi: 10.1016/j.tics.2016.10.005. Epub 2016 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验