Bilgel Murat, Prince Jerry L, Wong Dean F, Resnick Susan M, Jedynak Bruno M
Image Analysis and Communications Laboratory, Johns Hopkins University School of Engineering, Baltimore, MD, USA; Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
Image Analysis and Communications Laboratory, Johns Hopkins University School of Engineering, Baltimore, MD, USA; Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Dept. of Electrical and Computer Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, USA; Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Neuroimage. 2016 Jul 1;134:658-670. doi: 10.1016/j.neuroimage.2016.04.001. Epub 2016 Apr 16.
It is important to characterize the temporal trajectories of disease-related biomarkers in order to monitor progression and identify potential points of intervention. These are especially important for neurodegenerative diseases, as therapeutic intervention is most likely to be effective in the preclinical disease stages prior to significant neuronal damage. Neuroimaging allows for the measurement of structural, functional, and metabolic integrity of the brain at the level of voxels, whose volumes are on the order of mm(3). These voxelwise measurements provide a rich collection of disease indicators. Longitudinal neuroimaging studies enable the analysis of changes in these voxelwise measures. However, commonly used longitudinal analysis approaches, such as linear mixed effects models, do not account for the fact that individuals enter a study at various disease stages and progress at different rates, and generally consider each voxelwise measure independently. We propose a multivariate nonlinear mixed effects model for estimating the trajectories of voxelwise neuroimaging biomarkers from longitudinal data that accounts for such differences across individuals. The method involves the prediction of a progression score for each visit based on a collective analysis of voxelwise biomarker data within an expectation-maximization framework that efficiently handles large amounts of measurements and variable number of visits per individual, and accounts for spatial correlations among voxels. This score allows individuals with similar progressions to be aligned and analyzed together, which enables the construction of a trajectory of brain changes as a function of an underlying progression or disease stage. We apply our method to studying cortical β-amyloid deposition, a hallmark of preclinical Alzheimer's disease, as measured using positron emission tomography. Results on 104 individuals with a total of 300 visits suggest that precuneus is the earliest cortical region to accumulate amyloid, closely followed by the cingulate and frontal cortices, then by the lateral parietal cortex. The extracted progression scores reveal a pattern similar to mean cortical distribution volume ratio (DVR), an index of global brain amyloid levels. The proposed method can be applied to other types of longitudinal imaging data, including metabolism, blood flow, tau, and structural imaging-derived measures, to extract individualized summary scores indicating disease progression and to provide voxelwise trajectories that can be compared between brain regions.
为了监测疾病进展并确定潜在的干预点,表征疾病相关生物标志物的时间轨迹非常重要。这对于神经退行性疾病尤为重要,因为治疗干预在显著神经元损伤之前的临床前疾病阶段最有可能有效。神经成像能够在体素水平上测量大脑的结构、功能和代谢完整性,体素体积约为立方毫米量级。这些逐体素测量提供了丰富的疾病指标集合。纵向神经成像研究能够分析这些逐体素测量值的变化。然而,常用的纵向分析方法,如线性混合效应模型,没有考虑到个体在不同疾病阶段进入研究且进展速度不同这一事实,并且通常独立地考虑每个逐体素测量值。我们提出了一种多变量非线性混合效应模型,用于从纵向数据中估计逐体素神经成像生物标志物的轨迹,该模型考虑了个体间的此类差异。该方法涉及在期望最大化框架内基于逐体素生物标志物数据的集体分析为每次就诊预测一个进展分数,该框架能有效处理大量测量值以及个体就诊次数的变化,并考虑体素间的空间相关性。这个分数允许将进展相似的个体对齐并一起分析,从而能够构建大脑变化轨迹作为潜在进展或疾病阶段的函数。我们将我们的方法应用于研究皮质β - 淀粉样蛋白沉积,这是临床前阿尔茨海默病的一个标志,使用正电子发射断层扫描进行测量。对104名个体共300次就诊的结果表明,楔前叶是最早积累淀粉样蛋白的皮质区域,紧接着是扣带回和额叶皮质,然后是外侧顶叶皮质。提取的进展分数揭示了一种与平均皮质分布体积比(DVR)相似的模式,DVR是全脑淀粉样蛋白水平的一个指标。所提出的方法可应用于其他类型的纵向成像数据,包括代谢、血流、tau以及结构成像衍生的测量值,以提取表明疾病进展的个体化汇总分数,并提供可在脑区之间进行比较的逐体素轨迹。