Fenoll Didac A, Sodupe Mariona, Solans-Monfort Xavier
Departament de Química, Universitat Autònoma de Barcelona, 08195 Bellaterra, Spain.
ACS Omega. 2023 Mar 17;8(12):11467-11478. doi: 10.1021/acsomega.3c00324. eCollection 2023 Mar 28.
Cadmium selenide nanomaterials are very important materials in photonics, catalysis, and biomedical applications due to their optical properties that can be tuned through size, shape, and surface passivation. In this report, static and ab initio molecular dynamics density functional theory (DFT) simulations are used to characterize the effect of ligand adsorption on the electronic properties of the (110) surface of zinc blende and wurtzite CdSe and a (CdSe) nanoparticle. Adsorption energies depend on ligand surface coverage and result from a balance between chemical affinity and ligand-surface and ligand-ligand dispersive interactions. In addition, while little structural reorganization occurs upon slab formation, Cd···Cd distances become shorter and the Se-Cd-Se angles become smaller in the bare nanoparticle model. This originates mid-gap states that strongly influence the absorption optical spectra of nonpassivated (CdSe). Ligand passivation on both zinc blende and wurtzite surfaces does not induce a surface reorganization, and thus, the band gap remains nonaffected with respect to bare surfaces. In contrast, structural reconstruction is more apparent for the nanoparticle, which significantly increases its highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap upon passivation. Solvent effects decrease the band gap difference between the passivated and nonpassivated nanoparticles, the maximum of the absorption spectra being blue-shifted around 20 nm by the effect of the ligands. Overall, calculations show that flexible surface cadmium sites are responsible for the appearance of mid-gap states that are partially localized on the most reconstructed regions of the nanoparticle that can be controlled through appropriate ligand adsorption.
硒化镉纳米材料在光子学、催化和生物医学应用中是非常重要的材料,这归因于其光学性质可通过尺寸、形状和表面钝化进行调节。在本报告中,采用静态和从头算分子动力学密度泛函理论(DFT)模拟来表征配体吸附对闪锌矿和纤锌矿CdSe的(110)表面以及(CdSe)纳米粒子电子性质的影响。吸附能取决于配体的表面覆盖率,它是化学亲和力与配体 - 表面以及配体 - 配体色散相互作用之间平衡的结果。此外,虽然平板形成时几乎没有结构重组发生,但在裸纳米粒子模型中,Cd···Cd距离变短,Se - Cd - Se角变小。这产生了对未钝化(CdSe)的吸收光谱有强烈影响的带隙中间态。闪锌矿和纤锌矿表面上的配体钝化不会引起表面重组,因此,相对于裸表面,带隙保持不变。相比之下,纳米粒子的结构重构更为明显,钝化后其最高占据分子轨道(HOMO) - 最低未占据分子轨道(LUMO)能隙显著增加。溶剂效应减小了钝化和未钝化纳米粒子之间的带隙差异,配体的作用使吸收光谱的最大值蓝移约20 nm。总体而言,计算表明,灵活的表面镉位点是带隙中间态出现的原因,这些中间态部分定域在纳米粒子最重构的区域上,可通过适当的配体吸附来控制。