Suppr超能文献

倾向评分匹配:一种分析观察性非随机数据的强大工具。

Propensity Score Matching: A Powerful Tool for Analyzing Observational Nonrandomized Data.

机构信息

Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.

出版信息

Clin Spine Surg. 2021 Feb 1;34(1):22-24. doi: 10.1097/BSD.0000000000001055.

Abstract

In using observational, nonrandomized data, there is often interest in studying the effect of a particular treatment on a specific outcome. However, the imbalance of potential confounding variables between the treatment groups can distort the relationship between treatment and outcome. Propensity score matching is one, increasingly utilized, method to help account for such imbalances, allowing for a more accurate estimation of the influence of treatment on outcome. In this paper, we provide the clinician with an overview of propensity score matching techniques and provide a practical example of how this has been used in clinical research relevant to spine surgery.

摘要

在使用观察性、非随机数据时,人们通常有兴趣研究特定治疗对特定结果的影响。然而,治疗组之间潜在混杂变量的不平衡会扭曲治疗与结果之间的关系。倾向评分匹配是一种越来越被利用的方法,可以帮助解释这种不平衡,从而更准确地估计治疗对结果的影响。在本文中,我们为临床医生提供了倾向评分匹配技术的概述,并提供了一个实际的例子,说明如何将其用于与脊柱外科相关的临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验