Suppr超能文献

利用金黄色葡萄球菌 Cas9 在马铃薯中进行 CRISPR 诱导的缺失和碱基编辑。

CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.

机构信息

IGEPP, INRAE, Institut Agro, Univ Rennes, Ploudaniel, France.

Germicopa Breeding, Chateauneuf Du Faou, France.

出版信息

PLoS One. 2020 Aug 17;15(8):e0235942. doi: 10.1371/journal.pone.0235942. eCollection 2020.

Abstract

Genome editing is now widely used in plant science for both basic research and molecular crop breeding. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, through its precision, high efficiency and versatility, allows for editing of many sites in plant genomes. This system has been highly successful to produce knock-out mutants through the introduction of frameshift mutations due to error-prone repair pathways. Nevertheless, recent new CRISPR-based technologies such as base editing and prime editing can generate precise and on demand nucleotide conversion, allowing for fine-tuning of protein function and generating gain-of-function mutants. However, genome editing through CRISPR systems still have some drawbacks and limitations, such as the PAM restriction and the need for more diversity in CRISPR tools to mediate different simultaneous catalytic activities. In this study, we successfully used the CRISPR-Cas9 system from Staphylococcus aureus (SaCas9) for the introduction of frameshift mutations in the tetraploid genome of the cultivated potato (Solanum tuberosum). We also developed a S. aureus-cytosine base editor that mediate nucleotide conversions, allowing for precise modification of specific residues or regulatory elements in potato. Our proof-of-concept in potato expand the plant dicot CRISPR toolbox for biotechnology and precision breeding applications.

摘要

基因组编辑现在在植物科学中被广泛用于基础研究和分子作物育种。通过其精确性、高效率和多功能性,簇状规律间隔短回文重复序列(CRISPR)技术允许编辑植物基因组中的许多位点。该系统通过易错修复途径引入移码突变,非常成功地产生了敲除突变体。然而,最近的新型基于 CRISPR 的技术,如碱基编辑和 Prime 编辑,可以精确且按需进行核苷酸转换,从而可以精细调节蛋白质功能并产生功能获得性突变体。然而,通过 CRISPR 系统进行基因组编辑仍然存在一些缺点和限制,例如 PAM 限制以及需要更多多样性的 CRISPR 工具来介导不同的同时催化活性。在这项研究中,我们成功地使用了来自金黄色葡萄球菌(SaCas9)的 CRISPR-Cas9 系统在栽培马铃薯(Solanum tuberosum)的四倍体基因组中引入移码突变。我们还开发了一种金黄色葡萄球菌胞嘧啶碱基编辑器,介导核苷酸转换,允许在马铃薯中精确修饰特定残基或调控元件。我们在马铃薯中的概念验证扩展了植物双子叶 CRISPR 工具包,用于生物技术和精准育种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3346/7430721/774124714c17/pone.0235942.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验