Suppr超能文献

一种用于精准组织工程的顺序 3D 生物打印和正交生物偶联方法。

A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering.

机构信息

Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

出版信息

Biomaterials. 2020 Nov;258:120294. doi: 10.1016/j.biomaterials.2020.120294. Epub 2020 Aug 9.

Abstract

Recent advances in 3D bioprinting have transformed the tissue engineering landscape by enabling the controlled placement of cells, biomaterials, and bioactive agents for the biofabrication of living tissues and organs. However, the application of 3D bioprinting is limited by the availability of cytocompatible and printable biomaterials that recapitulate properties of native tissues. Here, we developed an integrated 3D projection bioprinting and orthogonal photoconjugation platform for precision tissue engineering of tailored microenvironments. By using a photoreactive thiol-ene gelatin bioink, soft hydrogels can be bioprinted into complex geometries and photopatterned with bioactive moieties in a rapid and scalable manner via digital light projection (DLP) technology. This enables localized modulation of biophysical properties such as stiffness and microarchitecture as well as precise control over spatial distribution and concentration of immobilized functional groups. As such, well-defined properties can be directly incorporated using a single platform to produce desired tissue-specific functions within bioprinted constructs. We demonstrated high viability of encapsulated endothelial cells and human cardiomyocytes using our dual process and fabricated tissue constructs functionalized with VEGF peptide mimics to induce guided endothelial cell growth for programmable vascularization. This work represents a pivotal step in engineering multifunctional constructs with unprecedented control, precision, and versatility for the rational design of biomimetic tissues.

摘要

近年来,3D 生物打印技术的发展通过控制细胞、生物材料和生物活性物质的放置,实现了对活组织和器官的生物制造,从而改变了组织工程领域。然而,3D 生物打印的应用受到能够重现天然组织特性的细胞相容性和可打印生物材料的可用性的限制。在这里,我们开发了一种集成的 3D 投影生物打印和正交光接枝平台,用于定制微环境的精确组织工程。通过使用光反应性硫醇-烯明胶生物墨水,可以通过数字光投影 (DLP) 技术快速且可扩展地将软水凝胶生物打印成复杂的几何形状,并用光活性部分对其进行光图案化。这使得生物物理特性(如硬度和微观结构)的局部调制以及固定化功能基团的空间分布和浓度的精确控制成为可能。因此,可以直接使用单个平台来产生所需的组织特异性功能,从而在生物打印结构中产生良好定义的特性。我们使用我们的双工艺证明了封装的内皮细胞和人心肌细胞的高存活率,并制造了功能化有 VEGF 肽模拟物的组织构建体,以诱导内皮细胞的定向生长,从而实现可编程的血管生成。这项工作代表了在具有前所未有的控制、精度和多功能性的多功能构建体工程方面的一个关键步骤,可用于仿生组织的合理设计。

相似文献

7
Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.明胶生物墨水中的细胞封装会损害3D生物打印分辨率。
J Mech Behav Biomed Mater. 2020 Mar;103:103524. doi: 10.1016/j.jmbbm.2019.103524. Epub 2019 Nov 9.

引用本文的文献

1
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
5
Recent advances and applications of artificial intelligence in 3D bioprinting.人工智能在3D生物打印中的最新进展与应用
Biophys Rev (Melville). 2024 Jul 19;5(3):031301. doi: 10.1063/5.0190208. eCollection 2024 Sep.
7
Multi-domain automated patterning of DNA-functionalized hydrogels.DNA 功能化水凝胶的多域自动化图案化。
PLoS One. 2024 Feb 2;19(2):e0295923. doi: 10.1371/journal.pone.0295923. eCollection 2024.

本文引用的文献

6
3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts.个性化厚且可灌注心脏补片和心脏的3D打印
Adv Sci (Weinh). 2019 Apr 15;6(11):1900344. doi: 10.1002/advs.201900344. eCollection 2019 Jun 5.
7
Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.可定制外周神经引导导管的快速连续3D打印
Mater Today (Kidlington). 2018 Nov;21(9):951-959. doi: 10.1016/j.mattod.2018.04.001. Epub 2018 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验