Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Biomaterials. 2020 Nov;258:120294. doi: 10.1016/j.biomaterials.2020.120294. Epub 2020 Aug 9.
Recent advances in 3D bioprinting have transformed the tissue engineering landscape by enabling the controlled placement of cells, biomaterials, and bioactive agents for the biofabrication of living tissues and organs. However, the application of 3D bioprinting is limited by the availability of cytocompatible and printable biomaterials that recapitulate properties of native tissues. Here, we developed an integrated 3D projection bioprinting and orthogonal photoconjugation platform for precision tissue engineering of tailored microenvironments. By using a photoreactive thiol-ene gelatin bioink, soft hydrogels can be bioprinted into complex geometries and photopatterned with bioactive moieties in a rapid and scalable manner via digital light projection (DLP) technology. This enables localized modulation of biophysical properties such as stiffness and microarchitecture as well as precise control over spatial distribution and concentration of immobilized functional groups. As such, well-defined properties can be directly incorporated using a single platform to produce desired tissue-specific functions within bioprinted constructs. We demonstrated high viability of encapsulated endothelial cells and human cardiomyocytes using our dual process and fabricated tissue constructs functionalized with VEGF peptide mimics to induce guided endothelial cell growth for programmable vascularization. This work represents a pivotal step in engineering multifunctional constructs with unprecedented control, precision, and versatility for the rational design of biomimetic tissues.
近年来,3D 生物打印技术的发展通过控制细胞、生物材料和生物活性物质的放置,实现了对活组织和器官的生物制造,从而改变了组织工程领域。然而,3D 生物打印的应用受到能够重现天然组织特性的细胞相容性和可打印生物材料的可用性的限制。在这里,我们开发了一种集成的 3D 投影生物打印和正交光接枝平台,用于定制微环境的精确组织工程。通过使用光反应性硫醇-烯明胶生物墨水,可以通过数字光投影 (DLP) 技术快速且可扩展地将软水凝胶生物打印成复杂的几何形状,并用光活性部分对其进行光图案化。这使得生物物理特性(如硬度和微观结构)的局部调制以及固定化功能基团的空间分布和浓度的精确控制成为可能。因此,可以直接使用单个平台来产生所需的组织特异性功能,从而在生物打印结构中产生良好定义的特性。我们使用我们的双工艺证明了封装的内皮细胞和人心肌细胞的高存活率,并制造了功能化有 VEGF 肽模拟物的组织构建体,以诱导内皮细胞的定向生长,从而实现可编程的血管生成。这项工作代表了在具有前所未有的控制、精度和多功能性的多功能构建体工程方面的一个关键步骤,可用于仿生组织的合理设计。